精英家教网 > 初中数学 > 题目详情
17.如图,△ABC是Rt△,∠ABC=90°,以AB为直径的⊙O交AC于D,⊙O的半径为5,$tanA=\frac{3}{4}$.
(1)利用尺规作图,过点D作⊙O的切线DE,交BC于点E,保留作图痕迹;
(2)求线段CD的长.

分析 (1)连接OD,作∠BOD的平分线交BC于点E,连接DE,DE就是⊙O的切线.
(2)连接BD,只要证明△ABD~△ACB,得$\frac{AD}{AB}$=$\frac{AB}{AC}$,求出AC即可解决问题.

解答 解:(1)如图,连接OD,作∠BOD的平分线交BC于点E,连接DE,DE就是⊙O的切线.


(2)连接BD,

∵BD是直径,
∴∠ADB=90°,
∵$tanA=\frac{3}{4}$.AB=10,
∴AD=8,BD=6,
∵∠BAD=∠BAC,∠ABC=∠ADB=90°,
∴△ABD~△ACB
∴$\frac{AD}{AB}$=$\frac{AB}{AC}$,
∴AC=$\frac{25}{2}$,
∴CD=AC-AD=$\frac{9}{2}$.

点评 本题考查切线的性质、解直角三角形、相似三角形的判定和性质等知识,解题的关键是学会添加辅助线,构造相似三角形解决问题,属于中考常考题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

10.小明“六、一”去公园玩投掷飞镖的游戏,投中国中阴影部分由奖品(飞镖盘被平均分成8份),小明一次投镖能获得奖品的概率是(  )
A.$\frac{1}{8}$B.$\frac{3}{8}$C.$\frac{8}{8}$D.$\frac{1}{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.二次函数y=x2+2x+m(m为常数)的图象与x轴交点A(x1,0),B(x2,0),且x1<x2<0,已知当x=a时,y<0,那么当x=a+2时,函数值(  )
A.y<mB.y>mC.y=mD.无法确定

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.下列图形是中心对称图形但不是轴对称图形的是(  )
A.菱形B.矩形C.正三角形D.平行四边形

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,在Rt△ABC中,∠C=90°,AC=8m,BC=6m,点P由C点出发以2m/s的速度向终点A匀速移动,同时点Q由点B出发以1m/s的速度向终点C匀速移动,当一个点到达终点时另一个点也随之停止移动.
(1)经过几秒△PCQ的面积为△ACB的面积的$\frac{1}{3}$?
(2)经过几秒,△PCQ与△ACB相似?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.我市正在进行轻轨九号线的建设,为了缓解市区一些主要路段的交通拥堵现状,交警大队在主要路口设置了交通路况指示牌如图所示,小明在离指示牌3米的点A处测得指示牌顶端D点和底端E点的仰角分别为60°和30°,则路况指示牌DE的高度为(  )
A.3-$\sqrt{3}$B.2$\sqrt{3}$-3C.2$\sqrt{3}$D.3+$\sqrt{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.小明到眼镜店调查了近视眼镜镜片的度数和镜片焦距的关系,发现镜片的度数y(度)是镜片焦距x(厘米)(x>0)的反比例函数,调查数据如表:
眼镜片度数y(度)40062580010001250
镜片焦距x(厘米)251612.5108
(1)求y与x的函数表达式;
(2)若小明所戴近视眼镜镜片的度数为500度,求该镜片的焦距.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,在直角坐标系中.
(1)描出下列各点A(-3,8),B(-8,4),C(-3,1),D(1,4),并将这些点用线段依次连接起来;
(2)求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.解方程和方程组
(1)(x-2)2=9
(2)$\left\{\begin{array}{l}{\frac{x+y}{3}+\frac{x-y}{2}=1}\\{3(x+y)-2(x-y)=22}\end{array}\right.$.

查看答案和解析>>

同步练习册答案