精英家教网 > 初中数学 > 题目详情
如图,有长为48米的篱笆,一面利用墙(墙的最大可用长度25米),围成中间隔有一道篱笆的长方形花圃ABCD.
(1)当AB的长是多少米时,围成长方形花圃ABCD的面积为180m2
(2)能围成总面积为240m2的长方形花圃吗?说明理由.
(1)设AB的长是x米,则BC的长为(48-3x)米,根据题意列方程得,
x(48-3x)=180,
解得x1=6,x2=10,
当x=6时,48-3x=30>25,不符合题意,舍去;
当x=10时,48-3x=18<25,符合题意;
答:当AB的长是10米时,围成长方形花圃ABCD的面积为180m2

(2)不能,理由如下:
同(1)可得x(48-3x)=240,
整理得x2-16x+80=0,
△=(-16)2-4×80=-64<0,
所以此方程无解,
即不能围成总面积为240m2的长方形花圃.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=ax2+bx+c经过点A(0,3)、B(4,3)、C(1,0)、
(1)填空:抛物线的对称轴为直线x=______,抛物线与x轴的另一个交点D的坐标为______;
(2)求该抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线y=ax2+4ax+t(a>0)交x轴于A、B两点,交y轴于点C,抛物线的对称轴交x轴于点E,点B的坐标为(-1,0).
(1)求抛物线的对称轴及点A的坐标;
(2)过点C作x轴的平行线交抛物线的对称轴于点P,你能判断四边形ABCP是什么四边形?并证明你的结论;
(3)连接CA与抛物线的对称轴交于点D,当∠APD=∠ACP时,求抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=ax2+bx+c经过A(-3,0),B(1,0),C(3,6)三点,且与y轴交于点E.(1)求抛物线的解析式;
(2)若点F的坐标为(0,-
1
2
),直线BF交抛物线于另一点P,试比较△AFO与△PEF的周长的大小,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某商店将进价为100元的某商品按120元的价格出售,可卖出300个;若商店在120元的基础上每涨价1元,就要少卖10个,而每降价1元,就可多卖30个.
(1)求所获利润y(元)与售价x(元)之间的函数关系式;
(2)为获利最大,商店应将价格定为多少元?
(3)为了让利顾客,在利润相同的情况下,请为商店选择正确的出售方式,并求出此时的售价.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

现有一块矩形场地,如图所示,长为40m,宽为30m,要将这块地划分为四块分别种植:A.兰花;B.菊花;C.月季;D.牵牛花.
(1)求出这块场地中种植B菊花的面积y与B场地的长x之间的函数关系式;求出此函数与x轴的交点坐标,并写出自变量的取值范围;
(2)当x是多少时,种植菊花的面积最大,最大面积是多少?请在格点图中画出此函数图象的草图(提示:找三点描出图象即可).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

一个小服装厂生产某种风衣,售价P(元/件)与月销售量x(件)之间的关系为P=160-2x,生产x件的成本R=500+30x元.
(1)该厂的月产量为多大时,获得的月利润为1300元?
(2)当月产量为多少时,可获得最大月利润?最大利润是多少元?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,用50m长的篱笆围成中间有一道篱笆墙的养殖场,设它的长为xm,养殖场的一边靠墙.
(1)要使养殖场的面积最大,养殖场的长应为多少米?
(2)若中间有n(n是大于1的整数)道篱笆隔墙,要使养殖场面积最大,养殖场的长应为多少米?比较(1)和(2),你能得出什么结论?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:点P(a+1,a-1)关于x轴的对称点在反比例函数y=-
8
x
(x>0)的图象上,y关于x的函数y=k2x2-(2k+1)x+1的图象与坐标轴只有两个不同的交点A﹑B,求P点坐标和△PAB的面积.

查看答案和解析>>

同步练习册答案