分析 (1)结论:DM=EM.只要证明△FME≌△AMH,推出HM=EM,在直角△HDE中利用斜边中线的性质即可证明.
(2)结论不变.证明方法类似.
解答 解:(1)结论:DM=EM.
理由:如图1,延长EM交AD于点H,
∵四边形ABCD和ECGF是矩形,
∴AD∥EF,
∴∠EFM=∠HAM,
又∵∠FME=∠AMH,FM=AM,
在△FME和△AMH中,
$\left\{\begin{array}{l}{∠EFM=∠HAM}\\{FM=AM}\\{∠FME=∠AMH}\end{array}\right.$,
∴△FME≌△AMH,
∴HM=EM,
在直角△HDE中,HM=EM,
∴DM=HM=EM,
∴DM=EM.
(2)成立.(证明方法类似),
点评 本题考查矩形的性质、全等三角形的判定和性质、正方形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
售价x(元) | 60 | 70 | 80 | 90 | … |
销售量y(件) | 280 | 260 | 240 | 220 | … |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 902 | B. | 901 | C. | 900 | D. | 899 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com