8£®ÒÑÖª²»µÈʽ×é$\left\{{\begin{array}{l}{x+3¡Ý5}\\{2-x¡Ý3}\end{array}}\right.$
£¨1£©ÓÃÔÚÊýÖáÉÏ»­Í¼µÄ·½Ê½ËµÃ÷Õâ¸ö²»µÈʽ×éÎ޽⣻
£¨2£©ÔÚ²»µÈʽ×é$\left\{{\begin{array}{l}{x+3¡Ý5}\\{2-x¡Ý£¨{\;}£©}\end{array}}\right.$µÄÀ¨ºÅÀïÌîÒ»¸öÊý£¬Ê¹²»µÈʽ×éÓн⣬ֱ½Óд³öËüµÄ½â¼¯ºÍÕûÊý½â£®

·ÖÎö £¨1£©Çó³öÿ¸ö²»µÈʽµÄ½â¼¯£¬ÔÚÊýÖáÉϱíʾ³öÀ´£¬¼´¿ÉµÃ³ö´ð°¸£»
£¨2£©Ö»ÒªÐ´³öÒ»¸öÊý£¬²»µÈʽ×éÓн⼴¿É£®

½â´ð ½â£º£¨1£©$\left\{\begin{array}{l}{x+3¡Ý5¢Ù}\\{2-x¡Ý3¢Ú}\end{array}\right.$
¡ß½â²»µÈʽ¢ÙµÃ£ºx¡Ý2£¬
½â²»µÈʽ¢ÚµÃ£ºx£¼-1£¬
ÔÚÊýÖáÉϱíʾ²»µÈʽµÄ½â¼¯Îª£º
´ÓÊýÖá¿ÉÒÔ¿´³ö£ºÁ½²»µÈʽµÄ½â¼¯Ã»Óй«¹²²¿·Ö£¬
¡à²»µÈʽ×éÎ޽⣻

£¨2£©²»µÈʽ×éΪ£º$\left\{\begin{array}{l}{x+3¡Ý5}\\{2-x¡Ý-2}\end{array}\right.$£¬
²»µÈʽ×éµÄ½â¼¯Îª2¡Üx¡Ü4£¬
²»µÈʽ×éµÄÕûÊý½âΪ2£¬3£¬4£®

µãÆÀ ±¾Ì⿼²éÁ˽âÒ»ÔªÒ»´Î²»µÈʽ×飬ÔÚÊýÖáÉϱíʾ²»µÈʽµÄ½â¼¯£¬²»µÈʽ×éµÄÕûÊý½âµÄÓ¦Óã¬Äܸù¾ÝÕÒ²»µÈʽ×é½â¼¯µÄ¹æÂÉÕÒ³ö²»µÈʽ×éµÄ½â¼¯Êǽâ´ËÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®½â·½³Ì£¨×飩
£¨1£©$\left\{\begin{array}{l}{2x+7y=5}\\{3x+y=-2}\end{array}\right.$
£¨2£©$\frac{x}{2x-1}$-$\frac{2}{1-2x}$=2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÏÂÁи÷¶Ôx£¬yµÄÖµÊÇ·½³Ì3x-2y=7µÄ½âÊÇ£¨¡¡¡¡£©
A£®$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$B£®$\left\{\begin{array}{l}{x=3}\\{y=-1}\end{array}\right.$C£®$\left\{\begin{array}{l}{x=-1}\\{y=-5}\end{array}\right.$D£®$\left\{\begin{array}{l}{x=5}\\{y=-4}\end{array}\right.$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®·½³Ìx+2y=-9ÓëÏÂÁз½³Ì¹¹³ÉµÄ·½³Ì×éµÄ½âΪ$\left\{\begin{array}{l}{x=-2}\\{y=\frac{1}{2}}\end{array}\right.$µÄÊÇ£¨¡¡¡¡£©
A£®x+2y=1B£®3x-4y=-8C£®5x+4y=-3D£®3x+2y=-8

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®½â²»µÈʽ×é$\left\{\begin{array}{l}{\frac{x+1}{3}£¾0}\\{2£¨x+5£©¡Ý6£¨x-1£©}\end{array}\right.$£¬²¢ÔÚÊýÖáÉϱíʾÆä½â¼¯£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®Èçͼ1£¬ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬Ö±ÏßAB¾­¹ýµãC£¨a£¬a£©£¬ÇÒ½»xÖáÓÚµãA£¨m£¬0£©£¬½»yÖáÓÚµãB£¨0£¬n£©£¬ÇÒm£¬nÂú×ã$\sqrt{m-6}$+£¨n-12£©2=0£®
£¨1£©ÇóÖ±ÏßABµÄ½âÎöʽ¼°Cµã×ø±ê£»
£¨2£©¹ýµãC×÷CD¡ÍAB½»xÖáÓÚµãD£¬ÇëÔÚͼ1Öл­³öͼÐΣ¬²¢ÇóDµãµÄ×ø±ê£»
£¨3£©Èçͼ2£¬µãE£¨0£¬-2£©£¬µãPΪÉäÏßABÉÏÒ»µã£¬ÇÒ¡ÏCEP=45¡ã£¬ÇóµãPµÄ×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®Ò»´Îº¯Êýy1=kx+bÓëy2=x+aµÄͼÏóÈçͼËùʾ£¬ÓÐÏÂÁнáÂÛ£º¢Ùk£¼0£»¢ÚÁ½Ö±Ïß½»Óڵ㣨3£¬1£©£»¢Ûµ±x£¼3ʱ£¬y1£¼y2£®ÆäÖÐÕýÈ·µÄ¸öÊýÊÇ£¨¡¡¡¡£©
A£®0B£®1C£®2D£®3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®ÔÚRt¡÷ABCÖУ¬¡ÏACB=90¡ã£¬AC=16£¬BC£ºAB=3£º5£¬ÔòBC=£¨¡¡¡¡£©
A£®9B£®15C£®12D£®20

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®Á½¸öÒ»´Îº¯Êýy=2x-$\frac{1}{2}$Óëy=-x+$\frac{2}{3}$µÄͼÏó½»µã×ø±êΪ£¨¡¡¡¡£©
A£®£¨$\frac{7}{18}£¬\frac{5}{18}$£©B£®£¨$\frac{1}{2}£¬\frac{2}{3}$£©C£®£¨$\frac{2}{3}£¬\frac{1}{2}$£©D£®£¨$\frac{7}{6}£¬\frac{5}{6}$£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸