精英家教网 > 初中数学 > 题目详情
已知:等边△ABC的边长为a.
探究(1):如图1,过等边△ABC的顶点A、B、C依次作AB、BC、CA的垂线围成△MNG,求证:△MNG是等边三角形且MN=
3
a;
探究(2):在等边△ABC内取一点O,过点O分别作OD⊥AB、OE⊥BC、OF⊥CA,垂足分别为点D、E、F.
①如图2,若点O是△ABC的重心,我们可利用三角形面积公式及等边三角形性质得到两个正确结论(不必证明):结论1. OD+OE+OF=
3
2
a;结论2. AD+BE+CF=
3
2
a;
②如图3,若点O是等边△ABC内任意一点,则上述结论1,2是否仍然成立?如果成立,请给予证明;如果不成立,请说明理由.
(1)证明:如图1,∵△ABC为等边三角形,
∴∠ABC=60°.
∵BC⊥MN,BA⊥MG,
∴∠CBM=∠BAM=90°.
∴∠ABM=90°-∠ABC=30°.
∴∠M=90°-∠ABM=60°.
同理:∠N=∠G=60°.
∴△MNG为等边三角形.
在Rt△ABM中,BM=
AB
sinM
=
a
sin60°
=
2
3
3
a,
在Rt△BCN中,BN=
BC
tanN
=
a
tan60°
=
3
3
a,
∴MN=BM+BN=
3
a.

(2)②:结论1成立.
证明:如图3,过点O作GHBC,分别交AB、AC于点G、H,过点H作HM⊥BC于点M,
∴∠DGO=∠B=60°,∠OHF=∠C=60°,
∴△AGH是等边三角形,
∴GH=AH.
∵OE⊥BC,
∴OEHM,
∴四边形OEMH是矩形,
∴HM=OE.
在Rt△ODG中,OD=OG•sin∠DGO=OG•sin60°=
3
2
OG,
在Rt△OFH中,OF=OH•sin∠OHF=OH•sin60°=
3
2
OH,
在Rt△HMC中,HM=HC•sinC=HC•sin60°=
3
2
HC,
∴OD+OE+OF=OD+HM+OF=
3
2
OG+
3
2
HC+
3
2
OH
=
3
2
(GH+HC)=
3
2
AC=
3
2
a.

(2)②:结论2成立.
证明:如图4,连接OA、OB、OC,根据勾股定理得:
BE2+OE2=OB2=BD2+OD2①,
CF2+OF2=OC2=CE2+OE2②,
AD2+OD2=AO2=AF2+OF2③,
①+②+③得:BE2+CF2+AD2=BD2+CE2+AF2
∴BE2+CF2+AD2=(a-AD)2+(a-BE)2+(a-CF)2=a2-2AD•a+AD2+a2-2BE•a+BE2+a2-2CF•a+CF2
整理得:2a(AD+BE+CF)=3a2
∴AD+BE+CF=
3
2
a.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

如图所示,在边长为2的正三角形ABC中,已知点P是三角形内任意一点,则点P到三角形的三边距离之和PD+PE+PF等于(  )
A.
3
B.2
3
C.4
3
D.无法确定

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

一艘轮船由海平面上A地出发向南偏西40°的方向行驶40海里到达B地,再由B地向北偏西20°的方向行驶40海里到达C地,则A、C两地相距(  )
A.30海里B.40海里C.50海里D.60海里

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,点A是BC上一点,△ABD、△ACE都是等边三角形.
试说明:
(1)AM=AN;
(2)MNBC;
(3)∠DOM=60°.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,△ABC为正三角形,面积为S.D1,E1,F1分别是△ABC三边上的点,且AD1=BE1=CF1=
1
2
AB,可得△D1E1F1,则△D1E1F1的面积S1=______;如,D2,E2,F2分别是△ABC三边上的点,且AD2=BE2=CF2=
1
3
AB,则△D2E2F2的面积S2=______;按照这样的思路探索下去,Dn,En,Fn分别是△ABC三边上的点,且
ADn=BEn=CFn=
1
n+1
AB,则Sn=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,等边△ABC的边长是4,D是边BC上的一个动点(与点B、C不重合),连接AD,作AD的垂直平分线分别与边AB、AC交于点E、F.
(1)求△BDE和△DCF的周长和;
(2)设CD长为x,△BDE的周长为y,求y关于x的函数解析式,并写出它的定义域;
(3)当△BDE是直角三角形时,求CD的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC,若三角形ABC的边长为1,AE=2,则CD的长为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图是一个等边三角形木框,甲虫P在边框AC上爬行(A,C端点除外),设甲虫P到另外两边的距离之和为d,等边三角形ABC的高为h,则d与h的大小关系是(  )
A.d>hB.d<hC.d=hD.无法确定

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

等边三角形的边长为8cm,则它的面积为______cm2

查看答案和解析>>

同步练习册答案