精英家教网 > 初中数学 > 题目详情

【题目】如图,已知梯形ABCD中,AD∥BC,AB=CD=AD,AC、BD相交于点O,∠BCD=60°,则下列4个结论:梯形ABCD是轴对称图形;②BC=2AD;③梯形ABCD是中心对称图形;④AC平分∠DCB,其中正确的是_____

【答案】①②④

【解析】

根据等腰梯形的性质即可求出答案.

①∵AB=CD,

∴梯形ABCD是等腰梯形,

∴过点O作直线lBC,此时直线l为梯形的对角线,故①正确;

②如图,过点DDEAB,

易证,四边形ADEB是平行四边形,

AD=BE,AB=DE,

AB=CD,

DE=CD,

∵∠BCD=60°,

∴△DEC是等边三角形,

CE=CD,

BC=BE+CE=AD+CD=2AD,故②正确;

③根据中心对称图形的定义可知等腰梯形ABCD不是中心对称图形,故③错误;

④∵AD=CD,

∴∠DAC=DCA,

ADBC,

∴∠DAC=ACB,

∴∠DCA=ACB,

CA平分∠DCB,故④正确;

故答案为:①②④

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,点的内心,过点,与分别交于点,则( )

A. EF>AE+CF B. EF<AE+CF C. EF=AE+BF D. EF≤AE+CF

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在正方形ABCD中,AC为对角线,点EAC上一点,连接EBED.

(1)求证:△BEC≌△DEC

(2)延长BEAD于点F,当∠BED120°时,求∠EFD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某水果批发商场销售一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下.若每千克涨价1元,日销售量将减少20千克.

(1)现该商场要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?

(2)每千克水果涨价多少元时,商场每天获得的利润最大?获得的最大利润是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,矩形ABCD中,点E、F分别在DC,AB边上,且点A、F、C在以点E为圆心,EC为半径的圆上,连接CF,作EG⊥CFG,交ACH.已知AB=6,设BC=x,AF=y.

(1)求证:∠CAB=∠CEG;

(2)①yx之间的函数关系式. ②x=   时,点FAB的中点;

(3)当x为何值时,点F的中点,以A、E、C、F为顶点的四边形是何种特殊四边形?试说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】10分在RtABC中,BAC=,D是BC的中点,E是AD的中点过点A作AFBC交BE的延长线于点F

1求证:AEFDEB

2证明四边形ADCF是菱形;

3AC=4,AB=5,求菱形ADCFD 的面积

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)解方程x2﹣4x=12;

(2)如图,△ABP是由△ACEA点旋转得到的,若∠APB=110°,∠B=30°,∠PAC=20°,求旋转角的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一次函数y=mx+n与反比例函数y=其中mn为常数,且mn0,则它们在同一坐标系中的图象可能是(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,四边形ABCD是正方形,ECD的中点,PBC边上的一点,下列条件:①∠APB=∠EPC;②∠APE=∠APB;③PBC的中点;④BP∶BC=2∶3.其中能推出△ABP∽△ECP的有( )

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

同步练习册答案