精英家教网 > 初中数学 > 题目详情
9.已知等腰三角形的一边长等于6cm,周长等于28cm,求其他两边的长.

分析 分腰长为6cm和底边长度为6cm两种情况,根据等腰三角形的性质讨论可得.

解答 解:若腰长为6cm,则另一腰的长也为6cm,则底边长为28-6-6=16cm,
此时三角形的三边为6cm,6cm,16cm,
∵6+6<16,不能构成三角形,
∴此情况舍去;
若底边长度为6cm,则两腰的长度为$\frac{28-6}{2}$=11(cm),
∴此时其他两边的长度为11cm,11cm.

点评 本题主要考查等腰三角形及三角形三边的关系,熟练掌握等腰三角形的性质及三角形三边间的关系是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

4.直角三角尺绕着它的一条直角边旋转一周后形成的几何体是(  )
A.圆柱B.球体
C.圆锥D.一个不规则的几何体

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.平面直角坐标系中,矩形OMPN的顶点P在第一象限,M在x轴上,N在y轴上,点A是PN的中点,且tan∠AON=$\frac{3}{4}$,过点A的双曲线y=$\frac{k}{x}$(x>0,k>0),与PM交于点B,过B作BC∥OA交x轴于C,若OC=$\frac{9}{2}$,则k=$\frac{972}{25}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.有一个圆心角为120°,半径为3cm的扇形,若将此扇形卷成一个圆锥,则此圆锥的侧面积是3π.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.已知抛物线的解析式为y=-(x+3)2+1,则它的顶点坐标是(-3,1).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.若x2=3,则x=±$\sqrt{3}$;若$\sqrt{x}$=3,则x=9;若 $\sqrt{x}$+(y-1)2=0,则x-y=-1.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.下列图形中既是中心对称图形,又是轴对称图形的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.【回顾】我们学习了三角形的全等,知道了判定两个三角形全等的基本事实有“SAS”、“ASA”、“SSS”,以及由事实得到的推论“AAS,我们还得到一个定理“HL”,下面对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.
【思考】我们将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.
【探究】

(1)第一种情况:当∠B是直角时,如图①,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E=90°,根据HL,可以知道△ABC≌△DEF
(2)第二种情况:当∠B是钝角时,如图②,在△ABC和△DEF中,AC=DF,BC=EF,∠ABC=∠DEF,且∠ABC,∠DEF都是钝角,求证:△ABC≌△DEF(请你继续完成证明过程).
证明:如图,过C作CG⊥AB交AB的延长线于点G,过F作FH⊥DE交DE的延长线于点H,
(3)第三种情况:当∠B是锐角时,即在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B,∠E都是锐角,请你用尺规在图③中作出△DEF与△ABC不全等.(不写作法,保留作图痕迹)
(4)∠B还要满足什么条件,就可以使△ABC≌△DEF?(请直接写出结论)
在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若∠B≥∠A,则△ABC≌△DEF.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.比较有理数大小:-3>-2006(选用“>”、“<”或“=”号填空).

查看答案和解析>>

同步练习册答案