精英家教网 > 初中数学 > 题目详情

【题目】如图,抛物线(a≠0)交x轴于A、B两点,A点坐标为(3,0),与y轴交于点C(0,4),以OC、OA为边作矩形OADC交抛物线于点G.

(1)求抛物线的解析式;

(2)抛物线的对称轴l在边OA(不包括O、A两点)上平行移动,分别交x轴于点E,交CD于点F,交AC于点M,交抛物线于点P,若点M的横坐标为m,请用含m的代数式表示PM的长;

(3)在(2)的条件下,连结PC,则在CD上方的抛物线部分是否存在这样的点P,使得以P、C、F为顶点的三角形和AEM相似?若存在,求出此时m的值,并直接判断PCM的形状;若不存在,请说明理由

【答案】解:(1)抛物线(a≠0)经过点A(3,0),点C(0,4),

,解得

抛物线的解析式为

(2)设直线AC的解析式为y=kx+b,

A(3,0),点C(0,4),

,解得

直线AC的解析式为

点M的横坐标为m,点M在AC上,

M点的坐标为(m,

研三理-孟奕含(713000529);点P的横坐标为m,点P在抛物线上,

点P的坐标为(m,

PM=PEME=()=

PM=(0<m<3)

(3)在(2)的条件下,连PC,在CD上方的抛物线部分存在这样的点P,使得以P、C、F为顶点的三角形和AEM相似理由如下:

由题意,可得AE=3﹣m,EM=,CF=m,PF==

若以P、C、F为顶点的三角形和AEM相似,分两种情况:

PFC∽△AEM,则PF:AE=FC:EM,即():(3m)=m:(),

m≠0且m≠3,m=

∵△PFC∽△AEM,∴∠PCF=AME

∵∠AME=CMF,∴∠PCF=CMF

在直角CMF中,∵∠CMF+MCF=90°,∴∠PCF+MCF=90°,即PCM=90°

∴△PCM为直角三角形

CFP∽△AEM,则CF:AE=PF:EM,即m:(3m)=():(),

m≠0且m≠3,m=1

∵△CFP∽△AEM,∴∠CPF=AME

∵∠AME=CMF,∴∠CPF=CMFCP=CM

∴△PCM为等腰三角形

综上所述,存在这样的点P使PFC与AEM相似.此时m的值为或1,PCM为直角三角形或等腰三角形

解析(1)将A(3,0),C(0,4)代入,运用待定系数法即可求出抛物线的解析式。

(2)先根据A、C的坐标,用待定系数法求出直线AC的解析式,从而根据抛物线和直线AC的解析式分别表示出点P、点M的坐标,即可得到PM的长。

(3)由于PFC和AEM都是直角,F和E对应,则若以P、C、F为顶点的三角形和AEM相似时,分两种情况进行讨论:①△PFC∽△AEM,②△CFP∽△AEM;可分别用含m的代数式表示出AE、EM、CF、PF的长,根据相似三角形对应边的比相等列出比例式,求出m的值,再根据相似三角形的性质,直角三角形、等腰三角形的判定判断出PCM的形状。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某校开展拓展课程展示活动,需要制作AB两种型号的宣传广告共20个,已知AB两种广告牌的单价分别为40元,70

1)若根据活动需要,A种广告牌数量与B种广告牌数量之比为32,需要多少费用?

2)若需制作AB两种型号的宣传广告牌,其中B种型号不少于5个,制作总费用不超过1000元,则有几种制作方案?每一种制作方案的费用分别是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(问题提出)|a1|+|a2|+|a3|++|a2019|最小值是多少?

(阅读理解)

为了解决这个问题,我们先从最简单的情况入手.|a|的几何意义是a这个数在数轴上对应的点到原点的距离.那么|a1|可以看做a这个数在数轴上对应的点到1的距离;|a1|+|a2|就可以看作a这个数在数轴上对应的点到12两个点的距离之和.下面我们结合数轴研究|a1|+|a2|的最小值.

我们先看a表示的点可能的3种情况,如图所示:

1)如图a1的左边,从图中很明显可以看出a12的距离之和大于1

2)如图a12之间(包括在12上),可以看出a12的距离之和等于1

3)如图a2的右边,从图中很明显可以看出a12的距离之和大于1

(问题解决)

1|a2|+|a5|的几何意义是   .请你结合数轴探究:|a2|+|a5|的最小值是   

2|a1|+|a2|+|a3|的几何意义是   .请你结合数轴探究:|a1|+|a2|+|a3|的最小值是   ,并在图的数轴上描出得到最小值时a所在的位置,由此可以得出a   

3)求出|a1|+|a2|+|a3|+|a4|+|a5|的最小值.

4)求出|a1|+|a2|+|a3|++|a2019|的最小值.

(拓展应用)

请在图的数轴上表示出a,使它到25的距离之和小于4,并直接写出a的范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,半圆O的直径AB4DEABEDFACF,连接CDDBOD

1)求证:△CDF≌△BDE

2)当AD   时,四边形AODC是菱形;

3)当AD   时,四边形AEDF是正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一只不透明的盒子里有背面完全相同,正面上分别写有数字1234的四张卡片,小马从中随机地抽取一张,把卡片上的数字作为被减数;在另一只不透明的盒子里将形状、大小完全相同,分别标有数字123的三个小球混合后,小虎从中随机地抽取一个,把小球上的数字做为减数,然后计算出这两个数的差.

1)请你用画树状图或列表的方法,求这两数差为0的概率;

2)小马与小虎做游戏,规则是:若这两数的差为非正数,则小马赢;否则小虎赢.你认为该游戏公平吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,以的一边为直径的半圆与其它两边的交点分别为,且.

1)试判断的形状,并说明理由.

2)已知半圆的半径为5,求的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下面是过圆上一点作圆的切线的尺规作图过程.

已知:⊙O和⊙O上一点P

求作:⊙O的切线MN,使MN经过点P

作法:如图,

1)作射线OP

2)以点P为圆心,小于OP的长为半径作弧交射线OPAB两点;

3)分别以点AB为圆心,以大于长为半径作弧,两弧交于MN两点;

4)作直线MN.MN就是所求作的⊙O的切线.

请回答:该尺规作图的依据是____________________________________________________________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,和矩形的边都在直线,以点为圆心,24为半径作半圆,分别交直线两点.已知: ,,矩形自右向左在直线上平移,当点到达点,矩形停止运动.在平移过程中,设矩形对角线与半圆的交点为 (为半圆上远离点的交点).

1)如图2,若与半圆相切,求的值;

2)如图3,当与半圆有两个交点时,求线段的取值范围;

3)若线段的长为20,直接写出此时的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,Q上一定点,P是弦AB上一动点,CAP中点,连接CQ,过点P于点D,连接ADCD

已知,设AP两点间的距离为CD两点间的距离为

(当点P与点A重合时,令y的值为1.30

小荣根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探宄.

下面是小荣的探究过程,请补充完整:

1)按照下表中自变量x的值进行取点、画图、测量,得到了yx的几组对应值:

2)建立平面直角坐标系,描出以补全后的表中各组对应值为坐标的点,画出该函数的图象;

3)结合函数图象,解决问题:当时,AP的长度约为__________cm

查看答案和解析>>

同步练习册答案