A. | 4 | B. | 5 | C. | 6 | D. | 7 |
分析 如图,作点P关于直线AD的对称点P′,连接QP′,由△AQP≌△AQP′,得PQ=QP′,欲求PQ+BQ的最小值,只要求出BQ+QP′的最小值,即当BP′⊥AC时,BQ+QP′的值最小,此时Q与D重合,P′与C重合,最小值为BC的长.
解答 解:如图,作点P关于直线AD的对称点P′,连接QP′,
在△AQP和△AQP′中,
$\left\{\begin{array}{l}{AP=AP′}\\{∠QAP=∠QAP′}\\{AQ=AQ}\end{array}\right.$,
∴△AQP≌△AQP′,
∴PQ=QP′
∴欲求PQ+BQ的最小值,只要求出BQ+QP′的最小值,
∴当BP′⊥AC时,BQ+QP′的值最小,此时Q与D重合,P′与C重合,最小值为BC的长.
在Rt△ABC中,∵∠C=90°,AB=8,∠BAC=30°,
∴BC=$\frac{1}{2}$AB=4,
∴PQ+BQ的最小值是4,
故选A.
点评 本题考查了勾股定理、轴对称中的最短路线问题、垂线段最短等知识,找出点P、Q的位置是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com