精英家教网 > 初中数学 > 题目详情

已知:关于x的方程x2+2x-k=0有两个不相等的实数根.
(1)求k的取值范围;
(2)若α,β是这个方程的两个实数根,求:数学公式的值;
(3)根据(2)的结果你能得出什么结论?

解:(1)△=4+4k,
∵方程有两个不等实根,
∴△>0,
即4+4k>0
∴k>-1

(2)由根与系数关系可知α+β=-2,
αβ=-k,
=

(3)由(1)可知,k>-1时,的值与k无关.
分析:(1)由方程x2+2x-k=0有两个不相等的实数根,可以求出△>0,由此可求出k的取值范围;
(2)欲求的值,先把此代数式变形为两根之积或两根之和的形式,代入数值计算即可.
(3)只要满足△>0(或用k的取值范围表示)的值就为一定值.
点评:将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:关于x的方程mx2-3(m-1)x+2m-3=0.
(1)求证:m取任何实数量,方程总有实数根;
(2)若二次函数y1=mx2-3(m-1)x+2m-3的图象关于y轴对称;
①求二次函数y1的解析式;
②已知一次函数y2=2x-2,证明:在实数范围内,对于x的同一个值,这两个函数所对应的函数值y1≥y2均成立;
(3)在(2)条件下,若二次函数y3=ax2+bx+c的图象经过点(-5,0),且在实数范围内,对于x的同一个值,这三个函数所对应的函数值y1≥y3≥y2均成立,求二次函数y3=ax2+bx+c的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

17、已知:关于x的方程x2+2x=3-4k有两个不相等的实数根(其中k为实数)
(1)则k的取值范围是
k<1

(2)若k为非负整数,则此时方程的根是
-3或1

查看答案和解析>>

科目:初中数学 来源: 题型:

3、已知:关于x的方程x2-kx-2=0.
(1)求证:方程有两个不相等的实数根;
(2)设方程的两根为x1,x2,如果2(x1+x2)>x1x2,求k的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:关于x的方程ax2-(1-3a)x+2a-1=0,求证:a取任何实数时,方程ax2-(1-3a)x+2a-1=0总有实数根.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:关于x的方程x2+kx-12=0,求证:方程有两个不相等的实数根.

查看答案和解析>>

同步练习册答案