【题目】如图所示,D、E分别是△ABC的边BC、AC上的点,且AB=AC,AD=AE.
(1)若∠BAD=20°,则∠EDC= °.
(2)若∠EDC=20°,则∠BAD= °.
(3)设∠BAD=α,∠EDC=β,你能由(1)(2)中的结果找到α、β间所满足的关系吗?请说明理由.
【答案】(1)10°;(2)40°;(3)α=2β .
【解析】
问题即是弄清∠CDE与∠BAD、∠DAE、∠ADE的大小关系,通过等边对等角及外角与内角的关系探索求解.
解:(1)∵AB=AC,∴∠B=∠C,
∵AD=AE,∴∠ADE=∠AED,
又∵∠ADC=∠B+∠BAD,∠AED=∠C+∠EDC,
∴∠ADE+∠EDC=∠B+∠BAD,
即∠C+∠EDC+∠EDC=∠B+∠BAD,
∴2∠EDC=∠BAD,
∵∠BAD=20°
∴∠EDC=10;
(2) ∵AB=AC,∴∠B=∠C,
∵AD=AE,∴∠ADE=∠AED,
又∵∠ADC=∠B+∠BAD,∠AED=∠C+∠EDC,
∴∠ADE+∠EDC=∠B+∠BAD,
即∠C+∠EDC+∠EDC=∠B+∠BAD,
∴2∠EDC=∠BAD,
∵∠EDC=20°
∴∠BAD=40°
(3)设∠BAD=α,∠EDC=β,则,α=2β.
证明:∵AB=AC,
∴∠B=∠C,
又∵∠ADC=∠BAD+∠B ,
∴∠ADC=∠BAD+∠C……①,
∵AD=AE,
∴∠ADE=∠AED,
∵∠ADC=∠EDC+∠ADE,
∴∠ADC=∠EDC+∠AED,
又∵∠AED=∠EDC+∠C,
∴∠ADC=∠EDC+∠EDC+∠C=2∠EDC+∠C……②,
由①②得:∠BAD+∠C=2∠EDC+∠C,
所以:∠BAD=2∠EDC,
结论:α=2β.
故答案为(1)10°;(2)40°;(3)α=2β.
科目:初中数学 来源: 题型:
【题目】如图,MN是⊙O的直径,MN=2,点A在⊙O上,∠AMN=30°,B为的中点,P是直径MN上一动点,则PA+PB的最小值为( )
A. B. C. 1 D. 2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC三个顶点的坐标分别为A(4,5)、B(1,0)、C(4,0).
(1)画出△ABC关于y轴的对称图形△A1B1C1,并写出A1点的坐标;
(2)在y轴上求作一点P,使△PAB的周长最小,并求出点P的坐标及△PAB的周长最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知Rt△ABC, ∠C=90°,CD 是AB边上的高, AC=4cm,BC=3cm,以点C为圆心作⊙C,使A、B、D三点至少有一个在圆内,且至少有一个在圆外,则⊙C半径r范围是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,要设计一个等腰梯形的花坛,花坛上底米,下底米,上下底相距米,在两腰中点连线(虚线)处有一条横向甬道,上下底之间有两条纵向甬道,各甬道的宽度相等.设甬道的宽为米.
用含的式子表示横向甬道的面积;
当三条甬道的面积是梯形面积的八分之一时,求甬道的宽;
根据设计的要求,甬道的宽不能超过米.如果修建甬道的总费用(万元)与甬道的宽度成正比例关系,比例系数是,花坛其余部分的绿化费用为每平方米万元,那么当甬道的宽度为多少米时,所建花坛的总费用最少?最少费用是多少万元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)探索发现
如图1,在△ABC中,点D在边BC上,△ABD与△ADC面积分别记为S1和S2,试判断与的数量关系,并说明理由.
(2)阅读分析
小东遇到这样一个问题:如图2,在Rt△ABC中,AB=AC,∠BAC=90°,射线AM交BC于点D,点E,F在AM上,且∠CEM=∠BFM=90°,试判断BF,CE,EF三条线段之间的数量关系.
小东利用一对全等三角形,经过推理使问题得以解决.
填空:①图2中的一对全等三角形为_________;
②BF,CE,EF三条线段之间的数量关系为__________________.
(3)类比探究
如图3,在四边形ABCD中,AB=AD,AC与BD交于点O,点E、F在射线AC上,且∠BCF=∠DEF=∠BAD.
①判断BC,DE,CE三条线段之间的数量关系,并说明理由;
②若OD=3OB,△AED的面积为2,直接写出四边形ABCD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).
(1)在图中作出△ABC关于y轴的对称图形△A1B1C1;
(2)在y轴上找出一点P,使得PA+PB的值最小,直接写出点P的坐标;
(3)在平面直角坐标系中,找出一点A2,使△A2BC与△ABC关于直线BC对称,直接写出点A2的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com