3£®ÉÀí½â£ºÐ¶¨Ò壺¶Ô·Ç¸ºÊµÊýx¡°ËÄÉáÎåÈë¡°µ½¸öλµÄÖµ¼ÆΪ£¼x£¾£¬
¼´£ºµ±nΪ·Ç¸ºÕûÊýʱ£¬Èç¹û$n-\frac{1}{2}¡Üx£¼n+\frac{1}{2}£¬Ôò£¼x£¾=n$£¬ÀýÈ磼0£¾=£¼0.48£¾=0£¬£¼0.64£¾=£¼1.49£¾=1£¬£¼2£¾=2£¬£¼3.5£¾=£¼4.12£¾=4£¬¡­ÊÔ½â¾öÏÂÁÐÎÊÌ⣺
£¨1£©Ìî¿Õ£º
¢Ù£¼¦Ð£¾=3£¨¦ÐΪԲÖÜÂÊ£©
¢ÚÈç¹û£¼x-1£¾=3£¬ÔòʵÊýxµÄÈ¡Öµ·¶Î§Îª3.5¡Üx£¼4.5
¢Ûд³öÒ»×éx£¬yÖµ£¬Ê¹µÈʽ£¼x+y£¾=£¼x£¾+£¼y£¾²»³ÉÁ¢£®ÀýÈ磺x=0.6£¬y=0.7£¨Ð´Ò»×é¼´¿É£©
£¨2£©ÉènΪ³£Êý£¬ÇÒΪÕýÕûÊý£¬º¯Êý$y={x^2}-x+\frac{1}{4}$µÄ×Ô±äÁ¿xÂú×㣼x£¾=nʱ£¬¶ÔÓ¦µÄº¯ÊýÖµyΪÕûÊýµÄ¸öÊý¼ÇΪa£¬ÇóaµÄÖµ£¨ÓÃn±íʾ£©

·ÖÎö £¨1£©¢Ù¸ù¾Ý£¼x£¾µÄ¶¨Òå¼´¿ÉµÃ³ö½áÂÛ£®
¢Ú¸ù¾Ý£¼x£¾¶¨Ò壬ÓÉ£¼x-1£¾=3Áгö·½³Ì¼´¿É½â¾ö£®
¢Û¾Ù·´Àý˵Ã÷¼´¿É£®
£¨2£©Óɺ¯Êýy=x2-x+$\frac{1}{4}$=£¨x-$\frac{1}{2}$£©2£¬nΪÕûÊý£¬ÓÖ£¼x£¾=n£¬µ±n-$\frac{1}{2}$¡Üx£¼n+$\frac{1}{2}$ʱ£¬yËæxµÄÔö´ó¶øÔö´ó£¬Áгö²»µÈʽ£¬¼´¿É½â¾öÎÊÌ⣮

½â´ð ½â£º£¨1£©¢ÙÓÉÌâÒâ¿ÉµÃ£º£¼¦Ð£¾=3£»
¹Ê´ð°¸Îª£º3£¬

¢Ú¡ß£¼x-1£¾=3£¬
¡à2.5¡Üx-1£¼3.5
¡à3.5¡Üx£¼4.5£»
¹Ê´ð°¸Îª£º3.5¡Üx£¼4.5£»

¢Û¾Ù·´Àý£º£¼0.6£¾+£¼0.7£¾=1+1=2£¬¶ø£¼0.6+0.7£¾=£¼1.3£¾=1£¬
¡à£¼0.6£¾+£¼0.7£¾¡Ù£¼0.6+0.7£¾£¬
¡à£¼x+y£¾=£¼x£¾+£¼y£¾²»Ò»¶¨³ÉÁ¢£»
¹Ê´ð°¸·Ö±ðΪ0.6£¬0.7£®

£¨2£©£©¡ßº¯Êýy=x2-x+$\frac{1}{4}$=£¨x-$\frac{1}{2}$£©2£¬nΪÕûÊý£¬ÓÖ£¼x£¾=n
µ±n-$\frac{1}{2}$¡Üx£¼n+$\frac{1}{2}$ʱ£¬yËæxµÄÔö´ó¶øÔö´ó£¬
¡à£¨n-1£©2¡Üy£¼n2£¬
¡àn2-2n+1¡Üy£¼n2
¡ßyΪÕûÊý£¬
¡ày=n2-2n+1£¬n2-2n+2£¬n2-2n+3£¬¡­£¬n2-2n+2n£¬¹²2n-1¸öy£¬
¡àa=2n-1

µãÆÀ ±¾Ì⿼²é¶þ´Îº¯Êý×ÛºÏÌ⣬½â¾ö±¾ÌâµÄ¹Ø¼üÊÇÀí½â£º¶Ô·Ç¸ºÊµÊýx¡°ËÄÉáÎåÈ롱µ½¸öλµÄÖµ¼ÇΪ£¼x£¾£¬¼´£ºµ±nΪ·Ç¸ºÕûÊýʱ£¬Èç¹ûn-$\frac{1}{2}$¡Üx£¼n+$\frac{1}{2}$£¬Ôò£¼x£¾=n£¬Ñ§»á°ÑÎÊÌâת»¯Îª²»µÈʽ£¬ÊôÓÚÖп¼´´ÐÂÌâÄ¿£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®¼ÆË㣺
£¨1£©-22¡Á$\sqrt{8}$+|1-$\sqrt{2}$|+6sin45¡ã+1
£¨2£©3tan30¡ã-2tan45¡ã+2sin60¡ã+4cos60¡ã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®¹ØÓÚxµÄ·½³Ì£¨k-1£©x2+2kx+2=0
£¨1£©ÇóÖ¤£ºÎÞÂÛkΪºÎÖµ£¬·½³Ì×ÜÓÐʵÊý¸ù£®
£¨2£©Éèx1£¬x2ÊÇ·½³Ì£¨k-1£©x2+2kx+2=0µÄÁ½¸ö¸ù£¬¼ÇS=x1x2-x1-x2£¬SµÄÖµÄÜΪ1Âð£¿ÈôÄÜ£¬Çó³ö´ËʱkµÄÖµ£»Èô²»ÄÜ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®´Ó³¤Óë¿í·Ö±ðΪaÓëbµÄ³¤·½ÐÎÖÐÍÚÈ¥Ò»¸öËÄ·ÖÖ®Ò»Ô²ºÍÒ»¸ö°ëÔ²£¬ÈçͼËùʾ£¬ÓÃʽ×Ó±íʾʣÓಿ·ÖµÄÃæ»ý£¬²¢ËµÃ÷¸Ãʽ×ÓÊÇ·ñΪ¶àÏîʽ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®¼ÆË㣺
£¨1£©£¨-2a2£©£¨3ab2-5ab3£©£»
£¨2£©£¨-2ab£©£¨3a2-2ab-4b2£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®Èçͼ£¬ÒÑÖªÔÚ¡÷ABCÖУ¬AB=AC£¬tan¡ÏB=2£¬BC=4£¬DΪBC±ßµÄÖе㣬µãEÔÚBC±ßµÄÑÓ³¤ÏßÉÏ£¬ÇÒCE=BC£¬Á¬½ÓAE£¬FΪÏ߶ÎAEµÄÖеã
£¨1£©ÇóÏ߶ÎCFµÄ³¤£»
£¨2£©Çó¡ÏCAEµÄÕýÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®Èçͼ£¬¢ÙµãPÔÚ¡ÏBACµÄƽ·ÖÏßÉÏ£»¢ÚµãPÔÚ¡ÏCBEµÄƽ·ÖÏßÉÏ£»¢ÛµãPÔÚ¡ÏBCDµÄƽ·ÖÏßÉÏ£¬ÈýÌõÖÐÂú×ãʲôÌõ¼þ£¬µÃµãPµ½¡÷ABCÈýÌõ±ß¾àÀëÏàµÈ£¨¡¡¡¡£©
A£®¢ÙB£®¢ÚC£®¢ÛD£®¢Ù¢Ú»ò¢Ù¢Û»ò¢Ú¢Û

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®£¨1£©ÔĶÁÏÂÃæ²ÄÁÏ£ºµãA¡¢BÔÚÊýÖáÉÏ·Ö±ð±íʾʵÊýa¡¢b£¬A¡¢BÁ½µãÖ®¼äµÄ¾àÀë±íʾΪ|AB|£®µ±A¡¢BÁ½µãÖÐÓÐÒ»µãÔÚÔ­µãʱ£¬²»·ÁÉèµãAÔÚÔ­µã£¬Èçͼ1£¬|AB|=|OB|=|b|=|a-b|£»µ±A¡¢BÁ½µã¶¼²»ÔÚÔ­µãʱ£¬
¢ÙÈçͼ2£¬µãA¡¢B¶¼ÔÚÔ­µãµÄÓұߣ¬|AB|=|OB|-|OA|=|b|-|a|=b-a=|a-b|£»
¢ÚÈçͼ3£¬µãA¡¢B¶¼ÔÚÔ­µãµÄ×ó±ß£¬|AB|=|OB|-|OA|=|b|-|a|=-b-£¨-a£©=|a-b|£»
¢ÛÈçͼ4£¬µãA¡¢BÔÚÔ­µãµÄÁ½±ß£¬|AB|=|OB|+|OA|=|a|+|b|=a+£¨-b£©=|a-b|£»

£¨2£©»Ø´ðÏÂÁÐÎÊÌ⣺
¢ÙÊýÖáÉϱíʾ2ºÍ5µÄÁ½µãÖ®¼äµÄ¾àÀëÊÇ3£¬ÊýÖáÉϱíʾ-2ºÍ-5µÄÁ½µãÖ®¼äµÄ¾àÀëÊÇ3£»ÊýÖáÉϱíʾ1ºÍ-3µÄÁ½µãÖ®¼äµÄ¾àÀëÊÇ4£»
¢ÚÊýÖáÉϱíʾxºÍ-1µÄÁ½µãAºÍBÖ®¼äµÄ¾àÀëÊÇ|x|+1£»
¢ÛÈç¹û|x+3|=2£¬ÄÇôxΪ-1»ò-5£»
¢Ü´úÊýʽ|x+3|+|x-2|×îСֵÊÇ5£¬µ±´úÊýʽ|x+3|+|x-2|È¡×îСֵʱ£¬ÏàÓ¦µÄxµÄÈ¡Öµ·¶Î§ÊÇ-3¡Üx¡Ü2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÔÚRt¡÷ABCÖУ¬Èô¡ÏC=90¡ã£¬a=5£¬¡ÏA=30¡ã£¬Çó¡ÏB¡¢b¡¢c£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸