精英家教网 > 初中数学 > 题目详情

在梯形ABCD中,AD∥BC,AC,BD相交于点O,若AD:BC=1:3,那么下列结论中正确的是


  1. A.
    S△COD=9S△AOD
  2. B.
    S△ABC=9S△ACD
  3. C.
    S△BOC=9S△AOD
  4. D.
    S△DBC=9S△AOD
C
分析:由于AD∥BC,可得出△AOD∽△COB;根据相似三角形的面积比等于相似比的平方,可得出△AOD和△BOC的比例关系式.根据等高三角形的面积比等于底边比,可得出△AOD与△AOB、△COD的比例关系.可据此进行判断.
解答:解:如图:∵AD∥BC,
∴△AOD∽△COB,

∴S△AOD:S△BOC=1:9,
S△AOD:S△COD:S△AOB=1:3:3,
S△BOC:S△COD:S△AOB=3:1:1,
因此S△AOD:S△ABC:S△DBC=1:12:12.
故本题选C.
点评:本题考查对相似三角形性质的理解,相似三角形面积的比等于相似比的平方.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

10、如图,在梯形ABCD中,若AB∥CD,BD=AD,∠BCD=110°,∠CBD=30°,则∠ADC=
140°

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在梯形ABCD中,AB∥CD,E是AB边上的点,给出下面三个论断:①AD=BC;②DE=CE;③AE=BE.请你以其中的两个论断为条件,填入“已知”栏中,以一个论断作为结论,填入“求证”栏中,使之成为一个正确的命题,并证明之.
已知:如图,在梯形ABCD中,AB∥CD,E是AB边上的点,
AD=BC,AE=BE
AD=BC,AE=BE

求证:
DE=CE
DE=CE

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在梯形ABCD中,AD∥BC,AD=AB,过点A作AE∥DB交CB的延长线于点E.
(1)试说明∠ABD=∠CBD.
(2)若∠C=2∠E,试说明AB=DC.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在梯形ABCD中,AD∥BC,AB=AD,BD=BC,∠A=100°,则∠BDC的度数为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在梯形ABCD中,AD∥BC,AB=
8
cm,AD=3cm,DC=
5
cm,∠B=45°,点P是下底BC边上的一个动点,从B向C以2cm/s的速度运动,到达点C时停止运动,设运动的时间为t(s).
(1)求BC的长;
(2)当t为何值时,四边形APCD是等腰梯形;
(3)当t为何值时,以A、B、P为顶点的三角形是等腰三角形.

查看答案和解析>>

同步练习册答案