A. | (4,8) | B. | (5,8) | C. | ($\frac{24}{5}$,$\frac{32}{5}$) | D. | ($\frac{22}{5}$,$\frac{36}{5}$) |
分析 由四边形ABCD为矩形,利用矩形的性质得到两对边相等,再利用折叠的性质得到OA=OD,两对角相等,利用HL得到直角三角形BOC与直角三角形BOD全等,利用全等三角形对应角相等及等角对等边得到OE=EB,在直角三角形OCE中,设CE=x,表示出OE,利用勾股定理求出x的值,确定出CE与OE的长,进而由三角形COE与三角形DEF相似,求出DF与EF的长,即可确定出D坐标.
解答 解:∵矩形ABCO中,OA=8,OC=4,
∴BC=OA=8,AB=OC=4,
由折叠得到OD=OA=BC,∠AOB=∠DOB,∠ODB=∠BAO=90°,
在Rt△CBO和Rt△DOB中,
$\left\{\begin{array}{l}{CB=DO}\\{OB=BO}\end{array}\right.$,
∴Rt△CBO≌Rt△DOB(HL),
∴∠CBO=∠DOB,
∴OE=EB,
设CE=x,则EB=OE=8-x,
在Rt△COE中,根据勾股定理得:(8-x)2=x2+42,
解得:x=3,
∴CE=3,OE=5,DE=3,
过D作DF⊥BC,可得△COE∽△FDE,
∴$\frac{OC}{DF}$=$\frac{OE}{DE}$=$\frac{CE}{EF}$,即$\frac{4}{DF}$=$\frac{5}{3}$=$\frac{3}{EF}$,
解得:DF=$\frac{12}{5}$,EF=$\frac{9}{5}$,
∴DF+OC=$\frac{12}{5}$+4=$\frac{32}{5}$,CF=3+$\frac{9}{5}$=$\frac{24}{5}$,
则D($\frac{24}{5}$,$\frac{32}{5}$),
故选C.
点评 此题考查了翻折变换(折叠问题),坐标与图形性质,全等三角形的判定与性质,勾股定理,熟练掌握折叠的性质是解本题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 经过有交通信号灯的路口,遇到红灯 | |
B. | 明天一定会下雨 | |
C. | 抛出的篮球会下落 | |
D. | 任意买一张电影票,座位号是2的倍数 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com