精英家教网 > 初中数学 > 题目详情
18.请在下列括号里填上合适的理由:
如图,已知DE∥AC,∠A=∠DEF,试说明∠B=∠FEC
证明∵DE∥AC(已知)
∴∠A=∠BDE(两直线平行,同位角相等)    
∵∠A=∠DEF(已知)
∴∠BDE=∠DEF(等量代换)
∴AB∥EF   (内错角相等,两直线平行) 
∴∠B=∠FEC         (两直线平行,同位角相等)

分析 根据平行线的性质和判定方法结合图形填空即可.

解答 解:∵DE∥AC(已知)
∴∠A=∠BDE(两直线平行,同位角相等),
∵∠A=∠DEF(已知)
∴∠BDE=∠DEF(等量代换),
∴AB∥EF(内错角相等,两直线平行),
∴∠B=∠FEC(两直线平行,同位角相等).
故答案为:两直线平行,同位角相等;等量代换;内错角相等,两直线平行;两直线平行,同位角相等.

点评 本题考查了平行线的判定与性质,是基础题,主要是逻辑推理能力的训练,熟记平行线的判定方法与性质是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

8.在平面直角坐标系中,已知点A(-4,0),B(4,0),点C在坐标轴上,且AC+BC=10,写出满足条件的所有点C的坐标(-5,0),(5,0),(0,3),(0,-3).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.已知x2+y2-2x+6y+10=0.求(2x+y)2的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.如图,已知A点坐标为($\sqrt{3}$,0),直线y=x+b(b>0)与y轴交于点B,连接AB,∠α=60°,则b的值为(  )
A.3$\sqrt{3}$-3B.$\sqrt{3}$+3C.2$\sqrt{3}$+3D.2$\sqrt{3}$-3

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.如图,矩形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙分别由点A(2,0)同时出发,沿矩形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2016次相遇地点的坐标是(2,0).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,在平面直角坐标系中四边形ABCD为菱形,边AD在y轴上.其中A(0,1),B(-$\sqrt{3}$,0),双曲线y=$\frac{m}{x}$经过点C.
(1)求反比例函数的解析式;
(2)连接CO并延长交双曲线于点E,连接DE,P是双曲线在第一象限上的一个动点,满足S△BDP=2S△CDE,求点P的坐标;
(3)将直线BD沿x轴向右平移,交x轴于点K,交射线BA于点H,问是否存在某一时刻,使得△KOH为等腰三角形?若存在求出线段OK的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.阅读下面的解题过程:
已知$\frac{x}{{x}^{2}+1}$=$\frac{1}{2}$,求$\frac{{x}^{2}}{{x}^{4}+1}$的值.
解:由$\frac{x}{{x}^{2}+1}$=$\frac{1}{2}$知x≠0,所以$\frac{{x}^{2}+1}{x}$=2,即x+$\frac{1}{x}$=2.
∴$\frac{{x}^{4}+1}{{x}^{2}}$=x2+$\frac{1}{{x}^{2}}$=(x+$\frac{1}{x}$)2-2=22-2=2,故$\frac{{x}^{2}}{{x}^{4}+1}$的值为$\frac{1}{2}$
评注:该题的解法叫做“倒数法”,请你利用“倒数法”解下面的题目:
已知$\frac{x}{{x}^{2}-x+1}$=$\frac{1}{7}$,求$\frac{{x}^{2}}{{x}^{4}+{x}^{2}+1}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.已知关于x的一元二次方程x2+2(m+1)x+2m-1=0,求证:不论m为任何实数,方程总有两个不等的实数根.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.分解因式
(1)x2-9
(2)8m2n+2mn.
(3)x2y-4xy+4y
(4)9x2(a-b)+y2(b-a)

查看答案和解析>>

同步练习册答案