【题目】如图,顶点为P(2,﹣4)的二次函数y=ax2+bx+c的图象经过原点,点A(m,n)在该函数图象上,连接AP、OP.
(1)求二次函数y=ax2+bx+c的表达式;
(2)若∠APO=90°,求点A的坐标;
(3)若点A关于抛物线的对称轴的对称点为C,点A关于y轴的对称点为D,设抛物线与x轴的另一交点为B,请解答下列问题:
①当m≠4时,试判断四边形OBCD的形状并说明理由;
②当n<0时,若四边形OBCD的面积为12,求点A的坐标.
【答案】(1)y=x2﹣4x;(2)A(,﹣);(3)①平行四边形,理由见解析;②A(1,﹣3)或A(3,﹣3).
【解析】
(1)由已知可得抛物线与x轴另一个交点(4,0),将(2,﹣4)、(4,0)、(0,0)代入y=ax2+bx+c即可求表达式;
(2)由∠APO=90°,可知AP⊥PO,所以m﹣2=,即可求A(,﹣);
(3)①由已知可得C(4﹣m,n),D(﹣m,n),B(4,0),可得CD∥OB,CD=CB,所以四边形OBCD是平行四边形;
②四边形由OBCD是平行四边形,,所以12=4×(﹣n),即可求出A(1,﹣3)或A(3,﹣3).
解:(1)∵图象经过原点,
∴c=0,
∵顶点为P(2,﹣4)
∴抛物线与x轴另一个交点(4,0),
将(2,﹣4)和(4,0)代入y=ax2+bx,
∴a=1,b=﹣4,
∴二次函数的解析式为y=x2﹣4x;
(2)∵∠APO=90°,
∴AP⊥PO,
∵A(m,m2﹣4m),
∴m﹣2=,
∴m=,
∴A(,﹣);
(3)①由已知可得C(4﹣m,n),D(﹣m,n),B(4,0),
∴CD∥OB,
∵CD=4,OB=4,
∴四边形OBCD是平行四边形;
②∵四边形OBCD是平行四边形,,
∴12=4×(﹣n),
∴n=﹣3,
∴A(1,﹣3)或A(3,﹣3).
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠BAC=75°,以点A为旋转中心,将△ABC绕点A逆时针旋转,得△AB'C',连接BB',若BB'∥AC',则∠BAC′ 的度数是______________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣4,3),C(﹣1,1).写出各点关于原点的对称点的坐标_____,_____,_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两名队员参加射击训练,每人射击10次,成绩分别如下:
根据以上信息,整理分析数据如下:
平均成绩/环 | 中位数/环 | 众数/环 | 方差 | |
甲 | a | 7 | 7 | 1.2 |
乙 | 7 | b | 8 | c |
(1)a=_____;b=_____;c=_____;
(2)填空:(填“甲”或“乙”).
①从平均数和中位数的角度来比较,成绩较好的是_____;
②从平均数和众数的角度来比较,成绩较好的是_____;
③成绩相对较稳定的是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=x(x﹣3)(0≤x≤3)的图象,记为C1,它与x轴交于点O,A1;将C1点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;……若P(2020,m)在这个图象连续旋转后的所得图象上,则m=_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB∥EF,则∠A、∠C、∠D、∠E满足的数量关系是( )
A. ∠A+∠C+∠D+∠E=360°B. ∠A-∠C+∠D+∠E=180°
C. ∠E-∠C+∠D-∠A=90°D. ∠A+∠D=∠C+∠E
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=ax2+bx+c(a<0)与x轴交于点A(﹣1,0),与y轴的交点在(0,2),(0,3)之间(包含端点),顶点坐标为(1,n),则下列结论:
①4a+2b<0;
②﹣1≤a≤;
③对于任意实数m,a+b≥am2+bm总成立;
④关于x的方程ax2+bx+c=n﹣1有两个不相等的实数根.
其中结论正确的个数为( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知矩形的顶点,过点的双曲线与矩形的边交于点.
(1)求双曲线的解析式以及点的坐标;.
(2)若点是抛物线的顶点;
①当双曲线过点时,求顶点的坐标;
②直接写出当抛物线过点时,该抛物线与矩形公共点的个数以及此时的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com