A. | 4.5 | B. | 4.2 | C. | 4 | D. | 3.8 |
分析 由反比例函数图象上点的坐标特征求出点P5的坐标,把所有的阴影部分向左平移,则所有阴影部分的面积恰好等于矩形P1ABC的面积,再利用矩形的面积公式结合反比例函数系数k的几何意义即可求出结论.
解答 解:当x=10时,y=$\frac{5}{x}$=$\frac{1}{2}$,
∴点P5(10,$\frac{1}{2}$).
∴S1+S2+S3+S4=${S}_{矩形{P}_{1}AOD}$-S矩形BCOD=k-2×$\frac{1}{2}$=4.
故选C.
点评 本题考查了反比例函数图象上点的坐标特征、反比例函数系数k的几何意义以及矩形的面积,将阴影部分左移找出S1+S2+S3+S4的值恰好为矩形P1ABC的面积是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com