依次连接等腰梯形各边中点所得到的四边形是 .
菱形.
【解析】
试题分析:连接AC、BD,求出AC=BD,根据三角形的中位线得出EF∥BD,GH∥BD,EH∥AC,FG∥AC,EF=BD,EH=AC,推出EF∥GH,EH∥FG,EF=EH,根据平行四边形和菱形的判定判断即可.
试题解析:连接AC、BD,如图:
∵四边形ABCD是等腰梯形,AD∥BC,
∴AC=BD,
∵E、F、G、H分别是AD、AB、BC、CD的中点,
∴EF∥BD,GH∥BD,EH∥AC,FG∥AC,EF=BD,EH=AC,
∴EF∥GH,EH∥FG,EF=EH,
∴四边形EFGH是平行四边形,
∴平行四边形EFGH是菱形.
考点: 1.三角形中位线定理;2.平行四边形的判定;3.菱形的判定;4.等腰梯形的性质.
科目:初中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com