精英家教网 > 初中数学 > 题目详情
已知:0<a<b<c,实数x、y满足2x+2y=a+b+c,2xy=ac,且x<y.求证:0<x<a,b<y<c.
证明:∵2x+2y=a+b+c,2xy=ac,
∴x+y=
a+b+c
2
,xy=
ac
2

∴x,y可看作方程t2-
a+b+c
2
t+
ac
2
=0的两实根,
设函数S=t2-
1
2
(a+b+c)t+
1
2
ac,
①当t=0时,S=
1
2
ac>0;
②当t=a时,S=a2-
a+b+c
2
•a+
ac
2
=
1
2
a(a-b),
而0<a<b,
∴S=
1
2
a(a-b)<0;
③当t=b时,S=b2-
1
2
(a+b+c)b+
1
2
ac=
1
2
(b-a)(b-c),
∵0<a<b<c,
∴S=
1
2
(b-a)(b-c)<0,
④当t=c时,S=
1
2
c(c-b)>0,
可知函数S=t2-
1
2
(a+b+c)t+
1
2
ac的图象与t轴的两个交点分别在0,a和b,c之间,如图,
∴方程t2-
a+b+c
2
t+
ac
2
=0的两根分别在0,a之间的和b,c之间,
即0<x<a,b<y<c.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知:抛物线y=ax2+bx+c经过原点(0,0)和A(1,-3),B(-1,5)两点.
(1)求抛物线的解析式;
(2)设抛物线与x轴的另一个交点为C,以OC为直径作⊙M,如果过抛物线上一点P作⊙M的切线PD,切点为D,且与y轴的正半轴交点为E,连接MD,已知E点的坐标为(0,m),求四边形EOMD的面积(用含m的代数式表示);
(3)延长DM交⊙M于点N,连接ON,OD,当点P在(2)的条件下运动到什么位置时,能使得四边形EOMD和△DON的面积相等,请求出此时点P的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

小张同学善于改进学习方法,他发现对解题过程进行回顾反思,效果会更好.某一天他利用30分钟时间进行自主学习.假设他用于解题的时间x(单位:分钟)与学习收益量y的关系如图甲所示,用于回顾反思的时间x(单位:分钟)与学习收益量y的关系如图乙所示(其中OA是抛物线的一部分,A为抛物线的顶点),且用于回顾反思的时间不超过用于解题的时间.
问:小张如何分配解题和回顾反思的时间,才能使这30分钟的学习收益总量最大?
(学习收益总量=解题的学习收益量+回顾反思的学习收益量)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某饮料经营部每天的固定成本为200元,其销售的饮料每瓶进价为5元.销售单价与日均销售量的关系如下:
售价单价(元)67891112
日均销售量(瓶)480440400360320240
(1)若记销售单价比每瓶进价多x元时,日均毛利润(毛利润=售价-进价-固定成本)为y元,求y关于x的函数解析式和自变量的取值范围;
(2)若要使日均毛利润达到最大,销售单价应定为多少元?最大日均毛利润为多少元?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

跳绳时,绳甩到最高处时的形状是抛物线.正在甩绳的甲、乙两名同学拿绳的手间距AB为6米,到地面的距离AO和BD均为0.9米,身高为1.4米的小丽站在距点O的水平距离为1米的点F处,绳子甩到最高处时刚好通过她的头顶点E.以点o为原点建立如图所示的平面直角坐标系,设此抛物线的解析式为y=ax2+bx+0.9.
(1)求该抛物线的解析式;
(2)如果身高为157.5厘米的小明站在OD之间且离点O的距离为t米,绳子甩到最高处时超过他的头顶,请结合函数图象,求出t的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,在平面直角坐标系中,点B的坐标为(-3,-4),线段OB绕原点逆时针旋转后与x轴的正半轴重合,点B的对应点为点A.
(1)直接写出点A的坐标,并求出经过A,O,B三点的抛物线的解析式;
(2)在抛物线的对称轴上是否存在点C,使BC+OC的值最小?若存在,求出点C的坐标,若不存在,请说明理由;
(3)如果点P是抛物线上的一个动点,且在x轴的上方,当点P运动到什么位置时,△PAB的面积最大?求出此时点P的坐标和△PAB的最大面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,一名男生推铅球,铅球行进高度y(单位:m)与水平距离x(单位:m)之间的关系是y=-
1
12
x2+
2
3
x+
5
3
.则他将铅球推出的距离是______m.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

方程
1
x
-2=x2-2x
实根的情况是(  )
A.有三个实根B.有两个实根C.有一个实根D.无实根

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:函数y=-
1
4
x2+x+a的图象的最高点在x轴上.
(1)求a;
(2)如图所示,设二次函数y=-
1
4
x2+x+a图象与y轴的交点为A,顶点为B,P为图象上的一点,若以线段PB为直径的圆与直线AB相切于点B,求P点的坐标;
(3)在(2)中,若圆与x轴另一交点C关于直线PB的对称点为M,试探索点M是否在抛物线y=-
1
4
x2+x+a上?若在抛物线上,求出M点的坐标;若不在,请说明理由.

查看答案和解析>>

同步练习册答案