精英家教网 > 初中数学 > 题目详情
精英家教网如图,在梯形ABCD中,AD∥BC,BD=CD,AB<CD且∠ABC为锐角,若AD=4,BC=12,E为BC上一点,问:当CE分别为何值时,四边形ABED是等腰梯形,直角梯形?请分别说明理由.
分析:在BC上截取CE=AD,连接DE、AE,根据已知判定四边形ABED是梯形,再利用全等三角形的判定得到AB=DE,从而得到四边形ABDE是等腰梯形;
在BC上找一点E′,使CE′=BE′=
1
2
BC=6,连接DE′.由已知BD=DC,得到DE′⊥BC,因为BE′≠AD,AD∥BE′,得出AB不平行于DE′,所以四边形ABE′D是直角梯形.
解答:精英家教网解:(1)当CE=4时,四边形ABDE是等腰梯形.(1分)
理由如下:在BC上截取CE=AD,连接DE、AE.
∵AD∥BC,
∴四边形AECD是平行四边形,(2分)
∴AE=CD=BD;
∵BE=12-4=8>4,
即BE>AD,
∴四边形ABED不是平行四边形,
∴AB不平行于DE;
∴四边形ABED是梯形.(3分)
∵AE∥CD,CD=BD,
∴∠AEB=∠C=∠DBC;
在△ABE和△DEB中
AE=BD
∠AEB=∠DBC
BE=EB

∴△ABE≌△DEB(SAS);
∴AB=DE;
∴四边形ABDE是等腰梯形.(5分)

(2)当CE′=6时,四边形ABE′D是直角梯形.(6分)
理由如下:在BC上找一点E′,使CE′=BE′=
1
2
BC=6,连接DE′.
∵BD=CD,
∴DE′⊥BC.
又∵BE′≠AD,AD∥BE′,
∴AB不平行于DE′(7分)
∴四边形ABE′D是直角梯形.(8分)
点评:此题考查学生对等腰梯形的判定和直角梯形的判定的掌握情况,做题注意辅助线的添加及有关全等三角形的判定的运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

11、如图,在梯形ABCD中,AB∥CD,对角线AC、BD交于点O,则S△AOD
=
S△BOC.(填“>”、“=”或“<”)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,在梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=CD=10.
求:梯形ABCD的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在梯形ABCD中,AD∥BC,AB⊥AD,对角线BD⊥DC.
(1)求证:△ABD∽△DCB;
(2)若BD=7,AD=5,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

20、如图,在梯形ABCD中,AD∥BC,并且AB=8,AD=3,CD=6,并且∠B+∠C=90°,则梯形面积S梯形ABCD=
38.4

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在梯形ABCD中,AD∥BC,∠BCD=90°,以CD为直径的半圆O切AB于点E,这个梯形的面积为21cm2,周长为20cm,那么半圆O的半径为(  )
A、3cmB、7cmC、3cm或7cmD、2cm

查看答案和解析>>

同步练习册答案