精英家教网 > 初中数学 > 题目详情
如图,在直角坐标系中,⊙O的圆心O在坐标原点,直径AB=8,点P是直径AB上的一个动点(点P不与A、B两点重合),过点P的直线PQ的解析式为y=x+m,当直线PQ交y轴于Q,交⊙O于C、D两点时,过点C作CE垂直于x轴交⊙O于点E,过点E作EG垂直于y轴,垂足为G,过点C作CF垂直于y轴,垂足为F,连接DE.
(1)点P在运动过程中,sin∠CPB=
2
2
2
2

(2)当m=3时,试求矩形CEGF的面积;
(3)当P在运动过程中,探索PD2+PC2的值是否会发生变化?如果发生变化,请你说明理由;如果不发生变化,请你求出这个不变的值;
(4)如果点P在射线AB上运动,当△PDE的面积为4时,请你求出CD的长度.
分析:(1)利用图象与x,y轴交点坐标得出QO=PO,从而得出∠CPB的度数,计算出sin∠CPB的值即可;
(2)利用勾股定理求出CF,FO的长度,求出矩形CEGF的面积即可;
(3)根据PC2+PD2=PD2+PE2=DE2,得出即可;
(4)分别从当点P在直径AB上时,以及当点P在线段AB的延长线上时得出CD与CM的长度关系,进而求出即可.
解答:解:(1)∵过点P的直线PQ的解析式为y=x+m,
∴图象与x轴交点坐标的为:(-m,0),图象与y轴交点坐标的为:(0,m),
∴QO=PO,∠POQ=90°,
∴∠CPB=45°,
则sin∠CPB=
2
2

故答案为:
2
2


(2)∵∠CPB=45°,
∴∠CQF=∠PQO=45°,
∴FC=FQ,
设FC=FQ=a,
则OF=a+3,
如图1,连接OC,
在Rt△OCF中,FC2+OF2=OC2?a2+(a+3)2=42?2a2+6a=7,
∴S四边形CEGF=CF×2FO=a×2(a+3)=7;

(3)不变.
∵AB垂直平分CE,
∴PC=PE,且∠CPB=∠EPH=45°,
∴PE⊥CD,
∴PD2+PC2=PD2+PE2=DE2
∵∠PCH=45°,
DE
=90°,
∴DO⊥EO,
∴DE=
2
OD=4
2

∴PD2+PC2=32;

(4)当点P在直径AB上时,S△PDE=
1
2
PD×PE=
1
2
PD×PC=4,PD×PC=8,
又∵PD2+PC2=32,
∴CD2=(PD+PC)2=32+16=48,CD=4
3

如图2,当点P在AB延长线上,
同理可得:CD2=(PC-PD)2=32-16=16,
开方得:CD=4.
综上,CD的长为4
3
或4.
点评:此题主要考查了圆的综合题,三角形的面积以及平方差公式应用以及一次函数的综合应用,要注意的是(4)中,要根据P点的不同位置进行分类求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

18、如图,在直角坐标系中,已知点A(-3,0),B(0,4),对△OAB连续作旋转变换,依次得到三角形①、②、③、④…,则三角形⑦的直角顶点的坐标为
(24,0)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在直角坐标系中,点P的坐标为(3,4),将OP绕原点O逆时针旋转90°得到线段OP′.
(1)在图中画出线段OP′;
(2)求P′的坐标和
PP′
的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角坐标系中,O为原点.反比例函数y=
6
x
的图象经过第一象限的点A,点A的纵坐标是横坐标的
3
2
倍.
(1)求点A的坐标;
(2)如果经过点A的一次函数图象与x轴的负半轴交于点B,AC⊥x轴于点C,若△ABC的面积为9,求这个一次函数的解析式.
(3)点D在反比例函数y=
6
x
的图象上,且点D在直线AC的右侧,作DE⊥x轴于点E,当△ABC与△CDE相似时,求点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角坐标系中,△ABC的三个顶点的坐标分别为A(-6,0),B(-4,6),C(0,2).画出△ABC的两个位似图形△A1B1C1,△A2B2C2,同时满足下列两个条件:
(1)以原点O为位似中心;
(2)△A1B1C1,△A2B2C2与△ABC的面积比都是1:4.(作出图形,保留痕迹,标上相应字母)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角坐标系中,已知点A(-4,0),B(0,3),对△OAB连续作旋转变换,依次得到三角形(1),三角形(2),三角形(3),三角形(4),…,

(1)△AOB的面积是
6
6

(2)三角形(2013)的直角顶点的坐标是
(8052,0)
(8052,0)

查看答案和解析>>

同步练习册答案