精英家教网 > 初中数学 > 题目详情
11.某货运公司准备用8辆车运送某种物资,要求每辆车运送的货物质量相同,若按每辆车运送的货物比预定数多1吨,则总数会超过100吨;若按每辆车运送的货物比预定数少1吨,则总数不足90吨,那么预定每辆车分配的吨数是12.

分析 设每辆车分配的吨数是x,根据按每组人数比预定人数多分配1人,则总数会超过100人和按每组人数比预定人数少分配1人,则总数不够90人按每辆车运送的货物比预定数多1吨,则总数会超过100吨;若按每辆车运送的货物比预定数少1吨,则总数不足90吨,列两个不等式,然后求不等式组的整数解即可.

解答 解:设每辆车分配的吨数是x,
根据题意得$\left\{\begin{array}{l}{8(x+1)>100}\\{8(x-1)<90}\end{array}\right.$,
解得$\frac{23}{2}$<x<$\frac{49}{4}$,
而x为整数,
所以x=12,
即每辆车分配的吨数是12吨.
故答案是:12.

点评 本题考查了一元一次不等式组的应用:一元一次不等式组的应用主要是列一元一次不等式组解应用题,其一般步骤:(1)分析题意,找出不等关系;(2)设未知数,列出不等式组;(3)解不等式组;
(4)从不等式组解集中找出符合题意的答案;(5)作答.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

1.已知线段AB,若点P在AB上且AP:PB=1:$\sqrt{2}$,则称点P为AB的“白银分割点”.
(1)如图1,△ABC为等腰直角三角形,∠A=90°,CP是角平分线,求证:点P是AB的“白银分割点”.
(2)四位同学分别设计了作AB“白银分割点”P的方法.
①如图②,△ABC是等腰直角三角形,∠ABC=90°,D在AC上,P在AB上,CD=CB,AP=AD;
②如图③,△ABC是等腰直角三角形,∠ACB=90°,P在AB上,BP=BC;
③如图④,△ABC是等腰直角三角形,∠C=90°,D在BA延长线上,AD=AB,E,P在DB上,DE=EP=AC;
④如图⑤,四边形ABCD是正方形,E,F分别在CD,BC上,CE:CF=1:$\sqrt{2}$,四边形EFGH是正方形,射线CG交AB于P.
这四位同学作图正确的是③④.(填写题号)
(3)如图⑥,△ABC是等腰直角三角形,∠C=90°,请你设计一种方法,画出AB的“白银分割点”P.(工具不限,写出画法,不需证明)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.某校开展了“互助、平等、感恩、和谐、进取”主题班会活动,活动后,就活动的5个主题进行了抽样调查(每位同学只选最关注的一个),根据调查结果绘制了两幅不完整的统计图.根据图中提供的信息,解答下列问题:
(1)这次调查的学生共有多少名?
(2)请将条形统计图补充完整;
(3)计算出扇形统计图中“进取”所对应的圆心角的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.已知:如图,在平行四边形ABCD和矩形ABEF中,AC与DF相交于点G.
(1)试说明DF=CE;
(2)若AC=BF=DF,求∠ACE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.甲、乙两个不透明的口袋,甲口袋中装有3个分别标有数字1,2,3的小球,乙口袋中装有2个分别标有数字4,5的小球,它们的形状、大小完全相同,现随机从甲口袋中摸出一个小球记下数字,再从乙口袋中摸出一个小球记下数字.
(1)请用列表或树状图的方法(只选其中一种),表示出两次所得数字可能出现的所有结果;
(2)求出两个数字之积能被2整除的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.下列图案是我国几家银行的标志,其中既是轴对称图形又是中心对称图形的有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.如图,将矩形ABCD绕点A逆时针旋转90°至矩形AEFG,点D的旋转路径为$\widehat{DG}$,若AB=1,BC=2,则阴影部分的面积为(  )
A.$\frac{π}{3}$+$\frac{\sqrt{3}}{2}$B.1+$\frac{\sqrt{3}}{2}$C.$\frac{π}{2}$D.$\frac{π}{3}$+1

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.易证:CE=CF.

(1)在图1中,若G在AD上,且∠GCE=45°.试猜想GE,BE,GD三线段之间的数量关系,并证明你的结论.
(2)运用(1)中解答所积累的经验和知识,完成下面两题:
①如图2,在四边形ABCD中∠B=∠D=90°,BC=CD,点E,点G分别是AB边,AD边上的动点.若∠BCD=α,∠ECG=β,试探索当α和β满足什么关系时,图1中GE,BE,GD三线段之间的关系仍然成立,并说明理由.
②在平面直角坐标中,边长为1的正方形OABC的两顶点A,C分别在y轴、x轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,当A点第一次落在直线y=x上时停止旋转,旋转过程中,AB边交直线y=x于点M,BC边交x轴于点N(如图3).设△MBN的周长为p,在旋转正方形OABC的过程中,p值是否有变化?若不变,请直接写出结论.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.如果二次根式$\sqrt{x+4}$有意义,那么x的取值范围是x≥-4.

查看答案和解析>>

同步练习册答案