精英家教网 > 初中数学 > 题目详情
19.如图,在以O为圆心的两个同心圆中,AB经过圆心O,且与小圆相交于点A,与大圆相交于点B.小圆的切线AC与大圆相交于点D,且CO平分∠ACB.
(1)试判断BC所在直线与小圆的位置关系,并说明理由;
(2)试判断线段AC、AD、BC之间的数量关系,并说明理由.
(3)若AB=8,BC=10,求大圆与小圆围成的圆环的面积.

分析 (1)只要证明OE垂直BC即可得出BC是小圆的切线,即与小圆的关系是相切.
(2)利用全等三角形的判定得出Rt△OAD≌Rt△OEB,从而得出EB=AD,从而得到三者的关系是前两者的和等于第三者.
(3)根据大圆的面积减去小圆的面积即可得到圆环的面积.

解答 解:(1)BC所在直线与小圆相切.
理由如下:
过圆心O作OE⊥BC,垂足为E;
∵AC是小圆的切线,AB经过圆心O,
∴OA⊥AC;
又∵CO平分∠ACB,OE⊥BC,
∴OE=OA,
∴BC所在直线是小圆的切线.

(2)AC+AD=BC.
理由如下:
连接OD.
∵AC切小圆O于点A,BC切小圆O于点E,
∴CE=CA;
∵在Rt△OAD与Rt△OEB中,
$\left\{\begin{array}{l}{OA=OE}\\{OD=OB}\end{array}\right.$,
∴Rt△OAD≌Rt△OEB(HL),
∴EB=AD;
∵BC=CE+EB,
∴BC=AC+AD.

(3)∵∠BAC=90°,AB=8cm,BC=10cm,
∴AC=6cm;
∵BC=AC+AD,
∴AD=BC-AC=4cm,
∵圆环的面积为:S=π(OD)2-π(OA)2=π(OD2-OA2),
又∵OD2-OA2=AD2
∴S=42π=16π(cm2).

点评 本题考查了切线的判定,全等三角形的判定等知识点.要证某线是圆的切线,①已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可,②所证切线与圆的交点不明确,可以过圆心作该直线的垂线段,证明垂线段的长等于半径.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

9.在平行四边形ABCD中,点E是BC边的中点,延长AE交DC的延长线于点F,连接AC、BF.
(1)如图1,求证:四边形ABFC是平行四边形;
(2)如图2,连接DE交AC于点G,若DE⊥AF,∠ADE=30°,判断四边形ABFC的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.如图,⊙O的半径为1,OA=2.5,∠OAB=30°,则AB与⊙O的位置关系是相离.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC于点D.
(1)利用尺规作⊙O,使⊙O经过点A,D,且圆心O在AB上,并标出⊙O与AB的另一个交点E(保留作图痕迹,不写作法);
(2)在你所作的图中,
①判断直线BC与⊙O的位置关系,并说明理由;
②若AB=6cm,BD=2$\sqrt{3}$cm,求:线段BD,BE与劣弧$\widehat{DE}$所围成的图形面积(结果保留根号和π)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.如图,将一个圆分割成甲、乙、丙三个扇形,使它们的圆心角的度数之比为2:3:4.若圆的半径为3,则扇形丙的面积为(  )
A.$\frac{2}{3}$πB.$\frac{4}{9}$πC.D.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.如图,AB∥CD,BF与CD相交于点E,联结DF,那么∠B和∠F、∠D的数量关系是∠B=∠F+∠D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.在四边形ABCD中,AD∥BC,AB=8cm,AD=16cm,BC=22cm,∠AEC=90°.点P从点A出发,以1cm/s的速度向点D运动,点Q从点C同时出发,以3cm/s的速度向点B运动,其中一个动点到达端点时,另一个动点也随之停止运动,设运动时间为t秒.
(1)当t=$\frac{11}{2}$时,四边形ABQP成为矩形?
(2)当t=4或$\frac{11}{2}$时,以点P、Q与点A、B、C、D中的任意两个点为顶点的四边形为平行四边形?
(3)四边形PBQD是否能成为菱形?若能,求出t的值;若不能,请说明理由,并探究如何改变Q点的速度(匀速运动),使四边形PBQD在某一时刻为菱形,求点Q的速度.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.若a+b=4,ab=3,求下面代数式的值
(1)a2b+ab2
(2)a2+b2

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.在-$\frac{π}{3}$,$\frac{22}{7}$,$\sqrt{12}$,-$\root{3}{27}$,2$\frac{1}{2}$,6.101001000100001(1后面的0依次多1个)中,无理数有(  )
A.2个B.3个C.4个D.5个

查看答案和解析>>

同步练习册答案