精英家教网 > 初中数学 > 题目详情
17.如图,在矩形ABCD中,AB<BC,E为CD边的中点,将△ADE绕点E顺时针旋转180°,点D的对应点为C,点A的对应点为F,过点E作ME⊥AF交BC于点M,连接AM、BD交于点N,现有下列结论:
①AM=AD+MC;
②AM=DE+BM;
③DE2=AD•CM;
④点N为△ABM的外心.
其中正确的个数为(  )
A.1个B.2个C.3个D.4个

分析 根据全等三角形的性质以及线段垂直平分线的性质,即可得出AM=MC+AD;根据△ABG∽△ADE,且AB<BC,即可得出BG<DE,再根据AM=GM=BG+BM,即可得出AM=DE+BM不成立;根据ME⊥FF,EC⊥MF,运用射影定理即可得出EC2=CM×CF,据此可得DE2=AD•CM成立;根据N不是AM的中点,可得点N不是△ABM的外心.

解答 解:∵E为CD边的中点,
∴DE=CE,
又∵∠D=∠ECF=90°,∠AED=∠FEC,
∴△ADE≌△FCE,
∴AD=CF,AE=FE,
又∵ME⊥AF,
∴ME垂直平分AF,
∴AM=MF=MC+CF,
∴AM=MC+AD,故①正确;

如图,延长CB至G,使得∠BAG=∠DAE,
由AM=MF,AD∥BF,可得∠DAE=∠F=∠EAM,
可设∠BAG=∠DAE=∠EAM=α,∠BAM=β,则∠AED=∠EAB=∠GAM=α+β,
由∠BAG=∠DAE,∠ABG=∠ADE=90°,可得△ABG∽△ADE,
∴∠G=∠AED=α+β,
∴∠G=∠GAM,
∴AM=GM=BG+BM,
由△ABG∽△ADE,可得$\frac{BG}{DE}$=$\frac{AB}{AD}$,
而AB<BC=AD,
∴BG<DE,
∴BG+BM<DE+BM,
即AM<DE+BM,
∴AM=DE+BM不成立,故②错误;

∵ME⊥FF,EC⊥MF,
∴EC2=CM×CF,
又∵EC=DE,AD=CF,
∴DE2=AD•CM,故③正确;

∵∠ABM=90°,
∴AM是△ABM的外接圆的直径,
∵BM<AD,
∴当BM∥AD时,$\frac{MN}{AN}$=$\frac{BM}{AD}$<1,
∴N不是AM的中点,
∴点N不是△ABM的外心,故④错误.
综上所述,正确的结论有2个,
故选:B.

点评 本题主要考查了相似三角形的判定与性质,全等三角形的判定与性质,矩形的性质以及旋转的性质的综合应用,解决问题的关键是运用全等三角形的对应边相等以及相似三角形的对应边成比例进行推导,解题时注意:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心,故外心到三角形三个顶点的距离相等.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

13.如图1,抛物线C1:y=x2+ax与C2:y=-x2+bx相交于点O、C,C1与C2分别交x轴于点B、A,且B为线段AO的中点.
(1)求 $\frac{a}{b}$的值;
(2)若OC⊥AC,求△OAC的面积;
(3)抛物线C2的对称轴为l,顶点为M,在(2)的条件下:
①点P为抛物线C2对称轴l上一动点,当△PAC的周长最小时,求点P的坐标;
②如图2,点E在抛物线C2上点O与点M之间运动,四边形OBCE的面积是否存在最大值?若存在,求出面积的最大值和点E的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.观察下列等式:
第一个等式:${a}_{1}=\frac{2}{1+3×2+2×{2}^{2}}=\frac{1}{2+1}-\frac{1}{{2}^{2}+1}$
第二个等式:${a}_{2}=\frac{{2}^{2}}{1+3×{2}^{2}+2×({2}^{2})^{2}}=\frac{1}{{2}^{2}+1}-\frac{1}{{2}^{3}+1}$
第三个等式:${a}_{3}=\frac{{2}^{3}}{1+3×{2}^{3}+2×({2}^{3})^{2}}=\frac{1}{{2}^{3}+1}-\frac{1}{{2}^{4}+1}$
第四个等式:${a}_{4}=\frac{{2}^{4}}{1+3×{2}^{4}+2×({2}^{4})^{2}}=\frac{1}{{2}^{4}+1}-\frac{1}{{2}^{5}+1}$
按上述规律,回答下列问题:
(1)请写出第六个等式:a6=$\frac{{2}^{6}}{1+3×{2}^{6}+2×({2}^{6})^{2}}$=$\frac{1}{{2}^{6}+1}$-$\frac{1}{{2}^{7}+1}$;
(2)用含n的代数式表示第n个等式:an=$\frac{{2}^{n}}{1+3×{2}^{n}+2×({2}^{n})^{2}}$=$\frac{1}{{2}^{n}+1}$-$\frac{1}{{2}^{n+1}+1}$;
(3)a1+a2+a3+a4+a5+a6=$\frac{14}{43}$(得出最简结果);
(4)计算:a1+a2+…+an

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,四边形ABCD是平行四边形,点E在AD上,请仅用无刻度直尺按要求作图(保留作图痕迹,不写作法)
(1)在图1中,过点E作直线EF将四边形ABCD的面积平分;
(2)在图2中,DE=DC,作∠A的平分线AM;

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.某中学初三年级的同学参加了一项节能的社会调查活动,为了了解家庭用电的情况,他们随即调查了某地50个家庭一年中生活用电的电费支出情况,并绘制了如下不完整的频数分布表和频数分布直方图(费用取整数,单位:元).
分组/元频 数频 率
1000<x<120030.060
1200<x<1400120.240
1400<x<1600180.360
1600<x<1800a0.200
1800<x<20005b
2000<x<220020.040
合计501.000
请你根据以上提供的信息,解答下列问题:
(1)补全频数分布表a=10,b=0.100,和频数分布直方图;
(2)这50个家庭电费支出的中位数落在哪个组内?
(3)若该地区有3万个家庭,请你估计该地区有多少个一年电费支出低于1400元的家庭?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.发现  任意五个连续整数的平方和是5的倍数.
验证  (1)(-1)2+02+12+22+32的结果是5的几倍?
          (2)设五个连续整数的中间一个为n,写出它们的平方和,并说明是5的倍数.
延伸   任意三个连续整数的平方和被3除的余数是几呢?请写出理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.如图,10个不同的正偶数按下图排列,箭头上方的每个数都等于其下方两数的和,如,表示a1=a2+a3,则a1的最小值为(  )
A.32B.36C.38D.40

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.过点(-1,7)的直线l与x轴、y轴分别交于点A、B,且与直线y=-$\frac{4}{3}$x平行.
(1)求直线l的解析式;
(2)写出在线段AB上,横、纵坐标都是整数的点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.三张质地、大小相同的卡片上,分别画上如图所示的三个图形,在看不到图形的情况下从中任意抽出一张,则抽出的卡片是轴对称图形的概率是$\frac{1}{3}$.

查看答案和解析>>

同步练习册答案