精英家教网 > 初中数学 > 题目详情
11.如图所示,将纸片△ABC沿DE折叠,点A落在点A′处,已知∠1=140°,∠2=40°,求∠A的度数.

分析 先根据图形翻折变换的性质得出∠ADE的度数,再由三角形外角的性质可知∠DEC=∠A+∠ADE,根据三角形内角和定理即可得出结论.

解答 解:∵∠1=140°,
∴∠ADA′=40°.
∵∠ADE=∠EAD′=20°,
∴∠DEC=∠A+20°.
∵∠DEC+∠2=∠DEA=180°-∠A-20°,
∴∠A+20°+40°=180°-∠A-20°,
∴∠A=50°.

点评 本题考查的是三角形定理,熟知三角形内角和是180°是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

17.在实数,-3,-2,0,-$\sqrt{2}$中,最大的是(  )
A.-3B.-2C.0D.-$\sqrt{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.某车间有20名工人,每人每天可平均加工甲种零件5个或者乙种零件4个,现准备安排其中的x人加工甲种零件,其余的人加工乙种零件.且每天生产的甲种零件数不少于乙种零件数.
(1)问至少安排多少工人生产甲种零件?
(2)若每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元,求这个车间每天获得的利润y(元)与x(人)之间的函数解析式,并求出该车间每天最多可获利润多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.某中学综合实践小组同学,想测量金龙山观音大佛的高度,他们在山脚下的D处测得山顶B的仰角为30°,沿着山脚向前走了4米达到E处,测得观音大佛的头顶A的倾角为45°,已知金龙山的山顶距地面的标高(线段BC的长度)为60米,请计算观音大佛的高度为多少米?(结果精确到0.1米,$\sqrt{3}$≈1.73)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,已知锐角θ和线段c,用直尺和圆规求作一直角△ABC,使∠BAC=θ,斜边AB=c.(不需写作法,保留作图痕迹)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.如图,等边三角形ABC中,点D,E分别为AB,AC的中点,则∠DEC的度数为(  )
A.150°B.120°C.60°D.30°

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.若代数式x+5的值是2,则x等于(  )
A.3B.-3C.-5D.-7

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.小明在参加数学兴趣活动小组时,探究如图甲这一基本图形.
【问题】:如图甲,AB∥CD,试探究∠B、∠E、∠D三者之间的数量关系,并说明理由;
【拓展】:将图甲变为图乙、图丙(其中AB∥CD不变),请你直接写出相应的结论:图乙:∠B+∠E+∠D=360°;图丙:∠B+∠F+∠D=∠E+∠G.
【应用】:如图丁,运用上面的结论解决问题:AB∥CD,BE平分∠ABF,DE平分∠CDF,∠BFD=120°,求∠BED的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.如图,直线AB、CD被直线EF所截,当满足条件∠1=∠5时(只需写出一个你认为合适的条件),AB∥CD.

查看答案和解析>>

同步练习册答案