精英家教网 > 初中数学 > 题目详情

【题目】某商场销售一批品牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.

(1)如果每件衬衣降价x元,每天可以销售y件,求y与x的函数关系式;

(2)若商场平均每天要盈利1200元,每件衬衫应降价多少元?

(3)每件衬衫降价多少元时,商场平均每天盈利最多?

【答案】(1)y=20+2x;(2)应降20元;(3)每件衬衫降价15元时,商场平均每天赢利最多,最大利润为1250元.

【解析】

试题分析:(1)准确表示出每天降价x元后售出的数量,第一小问即可解决;(2)根据:每件的实际利润×降价后的销售量=每天利润,列出方程解方程,再结合题意取舍可得;

(3)根据:每件的实际利润×降价后的销售量=每天利润,列出函数关系式,配方成二次函数顶点式,结合函数性质可得最值情况.

试题解析:(1)某商场销售一批品牌衬衫,平均每天可售出20件,如果每件衬衫每降价1元,商场平均每天可多售出2件.

每件衬衣降价x元,每天可以销售y件,y与x的函数关系式为:y=20+2x;

(2)商场平均每天要盈利1200元,

(40-x)(20+2x)=1200,

整理得:2x2-60x+400=0,

解得:x1=20,x2=10,

因为要减少库存,在获利相同的情况下,降价越多,销售越快,故每件衬衫应降20元;

(3)设商场平均每天赢利w元,

w=(20+2x)(40-x),

=-2x2+60x+800,

=-2(x-15)2+1250.

当x=15时,w取最大值,最大值为1250.

答:每件衬衫降价15元时,商场平均每天赢利最多,最大利润为1250元.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,对于平面内任一点P(a,b)若规定以下两种变换:f(a,b)= (-a,-b).如f(1,2)= (-1,-2);g(a,b)= (b,a).如g(1,3)= (3,1)按照以上变换,那么f(g (a,b))等于 .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】观察一列单项式:﹣2x,4x2,﹣8x3,16x4,…,则第5个单项式是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若多项式2x2+3x+7的值为8,则多项式2﹣6x2﹣9x的值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】56.2万平方米用科学记数法表示正确的是(

A.5.62×104m2 B.56.2×104m2 C.5.62×105m2 D.0.562×103m2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,设这个班有学生x人,下列方程正确的是( )

A.3x+20=4x﹣25 B.3x﹣25=4x+20

C.4x﹣3x=25﹣20 D.3x﹣20=4x+25

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市近期公布的居民用天然气阶梯价格听证会方案如下:

第一档天然气用量

第二档天然气用量

第三档天然气用量

年用天然气量360立方米及以下,价格为每立方米2.53元

年用天然气量超出360立方米,不足600立方米时,超过360立方米部分每立方米价格为2.78元

年用天然气量600立方米以上,超过600立方米部分价格为每立方米3.54元

例:若某户2015年使用天气然400立方米,按该方案计算,则需缴纳天然气费为:

2.53×360+2.78×(400﹣360)=1022(元);依此方案请回答:

(1)若小明家2015年使用天然气500立方米,则需缴纳天然气费为 元(直接写出结果);

(2)若小红家2015年使用天然气650立方米,则小红家2015年需缴纳的天然气费为多少元?

(3)依此方案计算,若某户2015年实际缴纳天然气费2286元,求该户2015年使用天然气多少立方米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有甲、乙、丙三种货物,若购甲3件、乙7件、丙1件共需630元;若购甲4件、乙10件、丙1件共需840元,现购甲、乙、丙各一件共需 元.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若方程4x﹣1=□x+2的解是x=3,则“□”处的数为

查看答案和解析>>

同步练习册答案