【题目】中华文明,源远流长:中华汉字,寓意深广,为了传承优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解本次大赛的成绩分布情况,随机抽取了其中200名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列不完整的统计图表:
成绩x/分 | 频数 | 频率 |
50≤x<60 | 10 | 0.05 |
60≤x<70 | 20 | 0.10 |
70≤x<80 | 30 | b |
80≤x<90 | a | 0.30 |
90≤x≤100 | 80 | 0.40 |
请根据所给信息,解答下列问题:
(1)a= , b=
(2)请补全频数分布直方图;
(3)这次比赛成绩的中位数会落在 分数段
(4)若成绩在90分以上(包括90分)的为“优”等,则该校参加这次比赛的3000名学生中成绩“优”等约有多少人?
【答案】
(1)60;0.15
(2)
补全频数分布直方图,如下:
(3)80≤x<90
(4)
3000×0.40=1200(人).
即该校参加这次比赛的3000名学生中成绩“优”等的大约有1200人.
【解析】解:(1)样本容量是:10÷0.05=200,
a=200×0.30=60,b=30÷200=0.15;
(2)补全频数分布直方图,如下:
(3)一共有200个数据,按照从小到大的顺序排列后,第100个与第101个数据都落在第四个分数段,
所以这次比赛成绩的中位数会落在80≤x<90分数段;
(4)3000×0.40=1200(人).
即该校参加这次比赛的3000名学生中成绩“优”等的大约有1200人.
故答案为60,0.15;80≤x<90;1200.
(1)根据第一组的频数是10,频率是0.05,求得数据总数,再用数据总数乘以第四组频率可得a的值,用第三组频数除以数据总数可得b的值;
(2)根据(1)的计算结果即可补全频数分布直方图;
(3)根据中位数的定义,将这组数据按照从小到大的顺序排列后,处于中间位置的数据(或中间两数据的平均数)即为中位数;
(4)利用总数3000乘以“优”等学生的所占的频率即可.
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD是正方形,E是AD上任意一点,延长BA到F,使得AF=AE,连接DF:
(1)旋转△ADF可得到哪个三角形?
(2)旋转中心是哪一点?旋转了多少度?
(3)BE与DF的数量关系、位置关系如何?为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知6x3y5与一个多项式的积为24x3y7-18x5y5+12x7y6,则这个多项式为( )
A. 4y2-3x2 B. 4xy2-3x2y C. 4y2-3x2+2x4y D. 4y2-3x2+6x3y
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知抛物线C1:y=的顶点为M,与y轴相交于点N,先将抛物线C1沿x轴翻折,再向右平移p个单位长度后得到抛物线C2:直线l:y=kx+b经过M,N两点.
(1)结合图象,直接写出不等式x2+6x+2<kx+b的解集;
(2)若抛物线C2的顶点与点M关于原点对称,求p的值及抛物线C2的解析式;
(3)若直线l沿y轴向下平移q个单位长度后,与(2)中的抛物线C2存在公共点,
求3﹣4q的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】线段CD是由线段AB平移得到的.点A(﹣1,4)的对应点为C(4,7),则点B(﹣4,﹣1)的对应点D的坐标为( )
A.(2,9)
B.(5,3)
C.(1,2)
D.(﹣9,﹣4)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某足球运动员站在点O处练习射门,将足球从离地面0.5m的A处正对球门踢出(点A在y轴上),足球的飞行高度y(单位:m)与飞行时间t(单位:s)之间满足函数关系y=at2+5t+c,已知足球飞行0.8s时,离地面的高度为3.5m.
(1)足球飞行的时间是多少时,足球离地面最高?最大高度是多少?
(2)若足球飞行的水平距离x(单位:m)与飞行时间t(单位:s)之间具有函数关系x=10t,已知球门的高度为2.44m,如果该运动员正对球门射门时,离球门的水平距离为28m,他能否将球直接射入球门?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com