精英家教网 > 初中数学 > 题目详情
17、若x,y,z为整数,且|x-y|2003+|z-x|2003=1,则|z-x|+|x-y|+|y-z|的值为(  )
分析:由于x,y,z为整数,且|x-y|2003+|z-x|2003=1,则|x-y|2003和|z-x|2003必须一项为0,一项为1.依此得出x,y,z之间的关系,从而求解.
解答:解:∵x,y,z为整数,且|x-y|2003+|z-x|2003=1,
∴|x-y|2003和|z-x|2003必须一项为0,一项为1.
假设x-y=0,|z-x|=1,
所以x=y,
所以|z-y|=1.
原式=1+0+1=2.
故选C.
点评:本题考查了有理数的乘方和绝对值的性质,由x,y,z为整数,和已知条件得出|x-y|2003和|z-x|2003必须一项为0,一项为1是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:二次函数y=x2-kx+k+4的图象与y轴交于点C,且与x轴的正半轴交于A、B两点(点A在点B左侧).若A、B两点的横坐标为整数,
(1)确定这个二次函数的解析式并求它的顶点坐标;
(2)若点D的坐标是(0,6),点P(t,0)是线段AB上的一个动点,它可与点A重合,但不与点B重合.设四边形PBCD的面积为S,求S与t的函数关系式;
(3)若点P与点A重合,得到四边形ABCD,以四边形ABCD的一边为边,画一个三角形,使它的面积等于四边形ABCD的面积,并注明三角形高线的长.再利用“等底等高的三角形面积相等”的知识,画一个三角形,使它的面积等于四边形ABCD的面积(画示意图,不写计算和证明过程).

查看答案和解析>>

科目:初中数学 来源: 题型:

12、若a、b、c为整数且|a-b|19+|c-a|95=1,则|c-a|+|a-b|+|b-a|的值为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

现有长为20厘米的铁丝,若要截成每段长为整数厘米的n(n>2)段,其中的任意三段均不能作为同一三角形的边长,则满足要求的n的最大值为
6
6
,请写出当n取最大值时截成的方案
1、1、2、3、5、8
1、1、2、3、5、8

查看答案和解析>>

科目:初中数学 来源: 题型:

某物流公司在重庆市甲、乙、丙三个仓库分别存有货物120吨、100吨、80吨,现要全部发往成都市A、B两地,根据实际需要,这批货物运往A地的数量比运往B地多20吨.
(1)求运往A、B两地的货物分别多少吨.
(2)若要求甲仓库运往A地的货物为70吨;乙仓库运往A地的货物不超过54吨;丙仓库运往A地的货物少于运往B地的货物.
①若乙仓库运往A地的货物为m吨,把下列表格填完整
甲仓库 乙仓库 丙仓库
A地 70 m
90-m
90-m
B地
50
50
100-m
100-m
m-10
m-10
②若货物的吨数都为整数,请问有几种调运方案?
(3)已知甲、乙、丙到A、B两地的路程(千米)及运费(元/千米•吨)如下表:
路程 运费 路程 运费 路程 运费
A 300 2 320 2.5 350 2
B 360 2.5 350 2.2 340 2
请问在(2)的所有方案中,哪种调运方案能使该公司负担的总费用最少?最少费用是多少?请写出具体方案.

查看答案和解析>>

科目:初中数学 来源: 题型:

若|x|≤1,且x为整数,那么x为
-1,0,1
-1,0,1

查看答案和解析>>

同步练习册答案