精英家教网 > 初中数学 > 题目详情
1.如图1,在平行四边形ABCD中,对角线AC,BD相交于点O,过O点作直线EF,分别交BC,AD于点E,F.
(1)证明:OF=OE;
(2)小明从图1找到了一种将平行四边形面积平分的方法.图2是一块纸片,其形状是一个大的平行四边形在一角剪去一个小的平行四边形,小明发现可以用一条直线将其分割成面积相等的两部分,请你帮助小明设计三种不同的分割方案.

分析 (1)利用平行四边形的性质结合全等三角形的判定得出△AOF≌△COE即可得出OF=OE;
(2)利用平行四边形的性质分割平行四边形即可.

解答 (1)证明:如图1,∵四边形ABCD是平行四边形,
∴AO=CO,∠FAO=∠ECO,∠AOF=∠COE,
在△AOF和△COE中
$\left\{\begin{array}{l}{∠FAO=∠OCE}\\{AO=CO}\\{∠AOF=∠COE}\end{array}\right.$,
∴△AOF≌△COE(ASA),
∴OF=OE;

(2)如图所示2,3,4所示:

点评 此题主要考查了平行四边形的性质以及全等三角形的判定与性质,正确掌握平行四边形的性质是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

11.解方程组
(1)$\left\{\begin{array}{l}{x-y=3}\\{3x+5y=1}\end{array}\right.$                         
(2)$\left\{\begin{array}{l}{3x-y+z=10}\\{x+2y-z=6}\\{x+y+z=12}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.已知:a+b=2,ab=1.求:
(1)a-b
(2)a2-b2+4b.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图①,△ABC的内角∠ABC的平分线与外角∠ACD的平分线相交于P点,∠A=40°,求∠P的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.如图:在矩形ABCD中,AB=4,BC=8,对角线AC、BD相交于点O,过点O作OE垂直AC交AD于点E,则DE的长是3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.数学兴趣小组活动中,小明将等腰直角三角板放到印有等宽的平行线的作业纸上,如图1,l∥m∥n,三角板的直角顶点A落在直线m上,直角边AB与直线l相交于点D,直角边AC与直线n相交于点E,斜边BC分别与直线l,m,n相交于点F,G,H.
(1)当∠BDF=35°时,∠CAG=55°;当∠BDF=20°时,∠CAG=70°;
(2)请从下列的A,B两题中任选一题作答,我选择A题.
A:如图1,若∠BDF=α(0°<α<90°),求∠CAG的度数(用含α的式子表示)
B:如图2,连接GE,若∠GEH+∠AEH=180°,则∠GEH与∠BDF有什么数量关系?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图所示,四边形ABCD是正方形,M是AB延长线上一点.直角三角尺的一条直角边经过点D,且直角顶点E在AB边上滑动(点E不与点A,B重合),另一条直角边与∠CBM的平分线BF相交于点F.
(1)如图1,当点E在AB边的中点位置时:
①通过测量DE,EF的长度,猜想DE与EF满足的数量关系是DE=EF;
②连接点E与AD边的中点N,猜想NE与BF满足的数量关系是NE=BF;
(2)请你证明上述两种猜想?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.问题背景:对于形如x2-120x+3600这样的二次三项式,可以直接用完全平方公式将它分解成(x-60)2,对于二次三项式x2-120x+3456,就不能直接用完全平方公式分解因式了.此时常采用将x2-120x加上一项602,使它与x2-120x的和成为一个完全平方式,再减去602,整个式子的值不变,于是有:
x2-120x+3456=x2-2×60x+603-602+3456
=(x-60)2-144=(x-60)2-122=(x-60+12)(x-60-12)
=(x-48)(x-72)
问题解决:
(1)请你按照上面的方法分解因式:x2-140x+4756;
(2)已知一个长方形的面积为a2+8ab+12b2,长为a+2b,求这个长方形的宽.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.张老师在黑板上画出了如图所示的图形,已知∠BAC=90°,AD⊥BC,垂足为D,则下列说法错误的是(  )
A.∠BAC与∠B是同旁内角B.AB与AC互相垂直
C.点A与直线BC的垂线段为线段ADD.点A到BC的距离是线段AD

查看答案和解析>>

同步练习册答案