精英家教网 > 初中数学 > 题目详情

【题目】已知:甲乙两车分别从相距300千米的A、B两地同时出发相向而行,其中甲到达B地后立即返回,如图是它们离各自出发地的距离y(千米)与行驶时间x(小时)之间的函数图象.

(1)求甲车离出发地的距离y(千米)与行驶时间x(小时)之间的函数关系式,并写出自变量的取值范围;

(2)若已知乙车行驶的速度是40千米/小时,求出发后多长时间,两车离各自出发地的距离相等;

(3)在上述条件下,直接写出它们在行驶过程中相遇时的时间.

【答案】(1)y=;(2)出发后 小时,两车离各自出发地的距离相等;(3)两车第一次相遇时间为第小时,第二次相遇时间为第6小时.

【解析】

(1)由图知,该函数关系在不同的时间里表现成不同的关系,需分段表达.当行驶时间小于3时是正比例函数;当行使时间大于3小时小于小时是一次函数.可根据待定系数法列方程,求函数关系式.
(2)设出发后a小时,两车离各自出发地的距离相等,列出方程即可解决问题;
(3)两者相向而行,相遇时甲、乙两车行使的距离之和为300千米,列出方程解答,由题意有两次相遇.

1)当0≤x≤3时,是正比例函数,设为y=kx

x=3时,y=300,代入解得k=100,所以y=100x

3x≤时,是一次函数,设为y=kx+b

代入两点(3300)、(0),得解得

所以y=54080x

综合以上得甲车离出发地的距离y与行驶时间x之间的函数关系式 为:y=

2)设出发后a小时,两车离各自出发地的距离相等.

由题意﹣80a+540=40a

解得a=s

答:出发后 小时,两车离各自出发地的距离相等.

3)由题意有两次相遇.

①当0≤x≤3100x+40x=300,解得x=

②当3x≤时,(54080x+40x=300,解得x=6

综上所述,两车第一次相遇时间为第小时,第二次相遇时间为第6小时.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】先阅读,后解答:

(1)由根式的性质计算下列式子得:

=3,②,③,④=5,⑤=0.

由上述计算,请写出的结果(a为任意实数).

(2)利用(1)中的结论,计算下列问题的结果:

化简:(x<2).

(3)应用:

=3,求x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小敏在作⊙O的内接正五边形时,先做了如下几个步骤:
(i)作⊙O的两条互相垂直的直径,再作OA的垂直平分线交OA于点M,如图1;
(ii)以M为圆心,BM长为半径作圆弧,交CA于点D,连结BD,如图2.若⊙O的半径为1,则由以上作图得到的关于正五边形边长BD的等式是( )

A.BD2= OD
B.BD2= OD
C.BD2= OD
D.BD2= OD

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校体育组为了了解学生喜欢的体育项目,从全校同学中随机抽取了若干名同学进行调查,每位同学从乒乓球、篮球、羽毛球、排球、跳绳中选择一项最喜欢的项目,并将调查的结果绘制成如下的两幅统计图.根据以上统计图,解答下列问题:
(1)这次被调查的共有多少名同学?并补全条形统计图.
(2)若全校有1200名同学,估计全校最喜欢篮球和排球的共有多少名同学?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校八年级共有三个班,都参加了学校举行的书法绘画大赛,三个班根据初赛成绩分别选出了10名同学参加决赛,这些选手的决赛成绩(满分100)如下表所示:

决赛成绩(单位:分)

八年1

80  86  88  80  88  99  80  74  91  89

八年2

85  85  87  97  85  76  88  77  87  88

八年3

82  80  78  78  81  96  97  87  92  84

解答下列问题:

(1)请填写下表:

平均数()

众数()

中位数()

 八年1

85.5

   

87

 八年2

85.5

85

   

 八年3

   

78

83

(2)请从以下两个不同的角度对三个班级的决赛成绩进行

从平均数和众数相结合看(分析哪个班级成绩好些).

从平均数和中位数相结合看(分析哪个班级成绩好些).

(3)如果在每个班级参加决赛的选手中分别选出3人参加总决赛,你认为哪个班级的实力更强一些?请简要说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面材料:

如图,把沿直线平行移动线段的长度,可以变到的位置;

如图,以为轴,把翻折,可以变到的位置;

如图,以点为中心,把旋转,可以变到的位置.

像这样,其中一个三角形是由另一个三角形按平行移动、翻折、旋转等方法变成的.这种只改变位置,不改变形状大小的图形变换,叫做三角形的全等变换.

回答下列问题:

在图中,可以通过平行移动、翻折、旋转中的哪一种方法怎样变化,使变到的位置;

指图中线段之间的关系,为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】端午节快到了,某市共青团组织以“中学生最喜欢项节日活动”为主题题进行了简单的随机抽样调查,让学生从“郊外踏青、品尝美食、观赏电影、参观室馆”四项活动中选择一项,然后绘制出以下两幅不完整的统计图.请根据图中的信息,回答下列问题:
(1)这次抽样调查中共调查了人;扇形统计图中郊外踏青部分的圆心角的度数是°;
(2)请补全条形统计图;
(3)某市有中学生3万人,请估计选择郊外踏青的人数有多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列结论正确的是(
A.x2﹣2是二次二项式
B.单项式﹣x2的系数是1
C.使式子 有意义的x的取值范围是x>﹣2
D.若分式 的值等于0,则a=±1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O的半径为1,A、P、B、C是⊙O上的四个点,∠APC=∠CPB=60°.
(1)判断△ABC的形状:
(2)试探究线段PA、PB、PC之间的数量关系,并证明你的结论.

查看答案和解析>>

同步练习册答案