【题目】如图,△ABC内接于⊙O,且AB=AC,延长BC至点D,使CD=CA,连接AD交⊙O与点E,连接BE,CE.
(1)求证:△ABE≌△CDE;
(2)填空:
①当∠ABC的度数为______时,四边形AOCE是菱形;
②若AE=,AB=2,则DE的长为______.
科目:初中数学 来源: 题型:
【题目】如图,已知正方形DEFG的顶点D、E在△ABC的边BC上,顶点G、F分别在边AB、AC上.如果BC=4,△ABC的面积是6,那么这个正方形的边长是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线与轴、轴分别相交于点B、C,经过B、C两点的抛物线与轴的另一个交点为A,顶点为P,且对称轴为直线。点G是抛物线位于直线下方的任意一点,连接PB、GB、GC、AC .
(1)求该抛物线的解析式;
(2)求△GBC面积的最大值;
(3)连接AC,在轴上是否存在一点Q,使得以点P,B,Q为顶点的三角形与△ABC相似?若存在,求出点Q的坐标;若不存在,请说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,一次函数y=kx+b的图象分别交x轴、y轴于A、B两点,与反比例函数y=的图象交于C、D两点,DE⊥x轴于点E,已知C点的坐标是(﹣6,﹣1),DE=3.
(1)求反比例函数与一次函数的解析式.
(2)根据图象直接回答:当x为何值时,一次函数的值小于反比例函数的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,AB=AC≠BC,点D和点A在直线BC的同侧,BD=BC,∠BAC=α,∠DBC=β,且α+β=120°,连接AD,求∠ADB的度数.(不必解答)
(1)小聪先从特殊问题开始研究,当α=90°,β=30°时,利用轴对称知识,以AB为对称轴构造△ABD的轴对称图形△ABD′,连接CD′(如图2),然后利用α=90°,β=30°以及等边三角形等相关知识便可解决这个问题.
请结合小聪研究问题的过程和思路,在这种特殊情况下填空:△D′BC的形状是 三角形;∠ADB的度数为 .
(2)在原问题中,当∠DBC<∠ABC(如图1)时,请计算∠ADB的度数;
(3)在原问题中,过点A作直线AE⊥BD,交直线BD于E,其他条件不变若BC=7,AD=2.请直接写出线段BE的长为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】新华书店销售一个系列的儿童书刊,每套进价100元,定价为140元,一天可以销售20套.为了扩大销售,增加盈利,减少库存,书店决定采取降价措施.若一套书每降价0.5元,平均每天可多售出1套.设每套书降价x元时,书店一天可获利润y元.
(1)求出y与x的函数关系式;
(2)该书店要获得最大利润,售价应定为每套多少元?
(3)小静说:“当某天的利润最大时,当天的销售额也最大.”你认为对吗?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知⊙O是△ABC的外接圆,AD是⊙O的直径,且BD=BC,延长AD到E,且有∠EBD=∠CAB.
(1)如图1,若BD=,AC=6
A.求证:BE为圆O的切线
B.求DE的长
(2)如图2,连结CD交AB于点F,若BD=,CF=3,求圆O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的一元二次方程(k﹣1)x2+(2k+1)x+k=0.
(1)依据k的取值讨论方程解的情况.
(2)若方程有一根为x=﹣2,求k的值及方程的另一根.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com