精英家教网 > 初中数学 > 题目详情
1.计算:-22+(π-3.14)0+(-1)5+(-$\frac{1}{2}$)-2

分析 原式利用乘方的意义,零指数幂、负整数指数幂法则计算即可得到结果.

解答 解:原式=-4+1-1+4=0.

点评 此题考查了实数的运算,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

11.若a=($\frac{1}{4}$)-1+20160,则a=5.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.已知8x=2,8y=5,则8x+y=10.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.实数x取任何值,下列代数式都有意义的是(  )
A.$\sqrt{6+2x}$B.$\sqrt{2-x}$C.$\sqrt{(x-1)^{2}}$D.$\frac{\sqrt{x+1}}{x}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.计算
(1)(12x3-6x2+9x)÷(-3x)
(2)(-$\frac{1}{3}$)-2-(-5)0+|-1|

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.计算(结果用根号表示)
(1)$7\sqrt{2}+3\sqrt{8}-4\sqrt{18}$
(2)$(2\sqrt{3}+1)(\sqrt{3}-1)+{(\sqrt{3}+2)^2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.把多项式2x3y-x2y2-6x2y分解因式时,应提取的公因式为(  )
A.x2yB.xy2C.2x3yD.6x2y

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.依语句画图并回答问题:已知:如图,△ABC.
(1)请用符号或文字语言描述线段CD的特征;
(2)画△ABC的边BC上的高AM;
(3)画∠BCD的对顶角∠ECF,使点E在BC的延长线上,CE=BC,点F在DC的延长线上,CF=DC,连接EF,猜想线段EF所在直线与DB所在直线的位置关系;
(4)连接AE,过点F画射线FN,使FN∥AE,且FN与线段AB的交点为点N,猜想线段FN与AE的数量关系.
解:
(1)线段CD的特征是CD⊥BC,垂足为点C,与边AB的交点为点D..
(2)画图.
(3)画图,线段EF所在直线与DB所在直线的位置关系是EF∥DB.
(4)画图,线段FN与AE的数量关系是FN=AE.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.如图,三条直线两两相交于点O,∠AOE的对顶角是∠BOF,∠AOD的邻补角是∠AOC、∠DOB.

查看答案和解析>>

同步练习册答案