精英家教网 > 初中数学 > 题目详情
如图,AO是边长为2的等边△ABC的高,点D是AO上的一个动点(点D不与点A、O重合),以CD为一边在AC下方作等边△CDE,连结BE并延长,交AC的延长线于点F.
(1)求证:△ACD≌△BCE;
(2)当△CEF为等腰三角形时:
①求∠ACD的度数;
②求△CEF的面积.
分析:(1)由△ABC和△CDE是等边三角形,用“SAS”证得△ACD≌△BCE;
(2)①由(1)得∠CBE=∠CAD=30°,得△ABF恒为直角三角形,且∠F=30°,CF=CB=2,又因为点D不与点A、O重合,可得当△CEF为等腰三角形时,∠F只能为顶角,继而求得答案;
②首先作CP⊥BF于点P,由∠CBE=30°,求得CP的长,继而求得答案.
解答:(1)证明:∵△ABC和△CDE是等边三角形,
∴AC=BC,CD=CE,∠ACB=∠DCE=60°,
∴∠ACD=∠BCE,
在△ACD和△BCE中,
AC=BC
∠ACD=∠BCE
CD=CE

∴△ACD≌△BCE(SAS);

(2)①∵AO是边长为2的等边△ABC的高,
∴∠CAO=30°,
∵△ACD≌△BCE,
∴∠CBE=∠CAD=30°,
∴∠ABF=90°,
∴∠F=90°-∠BAF=30°,
∴CF=CB=2,
又∵点D不与点A、O重合,
∴当△CEF为等腰三角形时,∠F只能为顶角,
∴∠FCE=75°,
∴∠ACD=∠BCE=120°-75°=45°;

②作CP⊥BF于点P,由∠CBE=30°,
得CP=
1
2
BC=1,
又∵CF=EF=2,
∴S△CEF=
1
2
×2×1=1
点评:此题考查了全等三角形的判定与性质、等边三角形的性质、等腰三角形的性质以及含30°角的直角三角形的性质.此题难度适中,注意掌握数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图1,点O是边长为1的等边△ABC内的任一点,设∠AOB=α°,∠BOC=β°

(1)将△BOC绕点C沿顺时针方向旋转60°得△ADC,连结OD,如图2所示.求证:OD=OC.
(2)在(1)的基础上,将△ABC绕点C沿顺时针方向旋转60°得△EAC,连结DE,如图3所示.求证:OA=DE
(3)在(2)的基础上,当α、β满足什么关系时,点B、O、D、E在同一直线上.并直接写出AO+BO+CO的最小值.

查看答案和解析>>

科目:初中数学 来源:2013届浙江杭州余杭星桥中学九年级下学期阶段性测试数学试卷(带解析) 题型:解答题

如图1,点O是边长为1的等边△ABC内的任一点,设∠AOB=°,∠BOC=°

(1)将△BOC绕点C沿顺时针方向旋转60°得△ADC,连结OD,如图2所示. 求证:OD=OC。

(2)在(1)的基础上,将△ABC绕点C沿顺时针方向旋转60°得△EAC,连结DE,如图3所示. 求证:OA=DE

(3)在(2)的基础上, 当满足什么关系时,点B、O、D、E在同一直线上。并直接写出AO+BO+CO的最小值。

查看答案和解析>>

科目:初中数学 来源:2013-2014学年福建省福州市九年级上学期期末质检数学试卷(解析版) 题型:解答题

如图,点O是边长为1的等边△ABC内的任一点,设∠AOB=°,∠BOC=°

(1)将△BOC绕点C沿顺时针方向旋转60°得△ADC,连结OD,如图2所示. 求证:OD=OC。

(2)在(1)的基础上,将△ABC绕点C沿顺时针方向旋转60°得△EAC,连结DE,如图3所示. 求证:OA=DE

(3)在(2)的基础上, 当满足什么关系时,点B、O、D、E在同一直线上。并直接写出AO+BO+CO的最小值。

 

查看答案和解析>>

科目:初中数学 来源:2012-2013学年浙江杭州余杭九年级下学期阶段性测试数学试卷(解析版) 题型:解答题

如图1,点O是边长为1的等边△ABC内的任一点,设∠AOB=°,∠BOC=°

(1)将△BOC绕点C沿顺时针方向旋转60°得△ADC,连结OD,如图2所示. 求证:OD=OC。

(2)在(1)的基础上,将△ABC绕点C沿顺时针方向旋转60°得△EAC,连结DE,如图3所示. 求证:OA=DE

(3)在(2)的基础上, 当满足什么关系时,点B、O、D、E在同一直线上。并直接写出AO+BO+CO的最小值。

 

查看答案和解析>>

同步练习册答案