精英家教网 > 初中数学 > 题目详情

【题目】如图所示,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连接AC,过点DDEACE

(1)求证:AB=AC

(2)求证:DE为⊙O的切线.

【答案】(1)证明见解析;(2)证明见解析.

【解析】试题分析:(1)连接AD,根据中垂线定理不难求得AB=AC

2)要证DE⊙O的切线,只要证明∠ODE=90°即可.

试题解析:(1)连接AD

∵AB⊙O的直径,

∴∠ADB=90°

∵DC=BD

∴ADBC的中垂线.

∴AB=AC

2)连接OD

∵OA=OBCD=BD

∴OD∥AC

∴∠0DE=∠CED

∵DE⊥AC

∴∠CED=90°

∴∠ODE=90°,即OD⊥DE

∴DE⊙O的切线.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】圆柱底面周长为4cm,高为9cm,点A、B分别是圆柱两底面圆周上的点,且A、B在同一母线上,用一根棉线从A点顺着圆柱侧面绕3圈到B点,则这根棉线的长度最短为________cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线ABCD于点OOE平分∠BODOF平分∠COB,∠AOD:∠BOE=41,则∠AOF等于(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A在直线l外,点B在直线l上.

1)在l上求作一点C,在l外求作一点D,使得以ABCD为顶点的四边形是菱形;(要求:用直尺和圆规作出所有大小不同的菱形)

2)连接AB,若AB5,且点A到直线l的距离为4,通过计算,找出(1)中面积最小的菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知∠1=∠2,∠B=∠C,可推得ABCD.理由如下:

∵∠1=∠2   ),

且∠1=∠4   

∴∠2=∠4(等量代换)

CEBF   

∴∠   =∠3   

又∵∠B=∠C(已知)

∴∠3=∠B   

ABCD   ).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知∠1=∠2,要说明ABDACD,还需从下列条件中选一个,错误的选法是(

A. ADB=∠ADCB. B=∠CC. DBDCD. ABAC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】折叠矩形纸片:

第一步,如图1,在纸片一端折出一个正方形MBCN,再把纸片展开;

第二步,如图2,把这个正方形对折,再把纸片展开,得矩形MAENABCE

第三步,如图3,折出矩形ABCE的对角线EB,并把EB折到图中所示的ED处;

第四步,如图4,展平纸片,按所得点D折出DF,得矩形BFDC.

1)若MN=2时,CM=________

2的值为 ________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】四边形ABCD是正方形,EF分别是DCCB的延长线上的点,且DE=BF,连接AEAFEF

1)求证:ADE≌△ABF

2BC=8DE=6,求AEF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校为了加强训练学生的篮球和足球运球技能,准备购买一批篮球和足球用于训练,已知1个篮球和2个足球共需116元;2个篮球和3个足球共需204

求购买1个篮球和1个足球各需多少元?

若学校准备购进篮球和足球共40个,并且总费用不超过1800元,则篮球最多可购买多少个?

查看答案和解析>>

同步练习册答案