ÔĶÁÏÂÁвÄÁÏ£¬¹ØÓÚxµÄ·½³Ì£ºx+
1
x
=c+
1
c
µÄ½âÊÇx1=c£¬x2=
1
c
£»x-
1
x
=c-
1
c
µÄ½âÊÇx1=c£¬x2=
-1
c
£»x+
2
x
=c+
2
c
µÄ½âÊÇx1=c£¬x2=
2
c
£»x-
2
x
=c-
2
c
µÄ½âÊÇx1=c£¬x2=
-2
c
£»¡­
£¨1£©Í¨¹ýÒÔÉϹ۲죬±È½Ï¹ØÓÚxµÄ·½³Ìx+
m
x
=c+
m
c
ÓëËüµÄ¹Øϵ£¬²ÂÏëËüµÄ½âÊÇʲô£¿ÇëÀûÓ÷½³ÌµÄ½âµÄ¸ÅÄîÀ´ÑéÖ¤£®
£¨2£©Í¨¹ýÉÏÃæ·½³ÌµÄ¹Û²ì£¬±È½Ï¡¢Àí½â¡¢ÑéÖ¤£¬ÄãÄܽâ³ö¹ØÓÚxµÄ·½³Ìx+
2
x-1
=a+
2
a-1
µÄ½âÂð£¿
·ÖÎö£º£¨1£©¸ù¾ÝÌâÄ¿ÐÅÏ¢½â´ð£¬È»ºó°Ñ·½³ÌµÄÁ½¸ö½â·Ö±ð´úÈëÔ­·½³ÌµÄ×ó±ß½øÐмÆË㣬µÈÓÚÓұ߼´¿ÉÑéÖ¤£»
£¨2£©°Ñx-1¿´×÷Ò»¸öÕûÌ壬ÔÙ¸ù¾ÝÌâÄ¿ÐÅÏ¢½â´ð¼´¿ÉÇó½â£®
½â´ð£º½â£º£¨1£©¸ù¾ÝÌâÒ⣬·½³ÌµÄ½âÊÇx1=c£¬x2=
m
c
£¬
ÑéÖ¤£ºµ±x1=cʱ£¬×ó±ß=x+
m
x
=c+
m
c
£¬
×ó±ß=Óұߣ¬
µ±x2=
m
c
ʱ£¬×ó±ß=x+
m
x
=
m
c
+
m
m
c
=
m
c
+c£¬
×ó±ß=Óұߣ¬
¡àÊÇx1=c£¬x2=
m
c
¶¼ÊÇÔ­·½³ÌµÄ½â£»

£¨2£©¸ù¾ÝÌâÄ¿ÐÅÏ¢£¬x1=a£¬x2-1=
2
a-1
£¬
½âµÃx1=a£¬x2=
a+1
a-1
£®
µãÆÀ£º±¾Ì⿼²éÁË·Öʽ·½³ÌµÄ½â£¬ÒÔ¼°·½³ÌµÄ½âµÄ¸ÅÄ¶Á¶®ÌâÄ¿ÌṩµÄÐÅÏ¢ÊÇÇó½âµÄ¹Ø¼ü£¬·½³ÌµÄ½âÊÇʹ·½³ÌµÄ×óÓÒÁ½±ßÏàµÈµÄδ֪ÊýµÄÖµ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÔĶÁÀí½â

ÔĶÁÏÂÁвÄÁÏ£º
¹ØÓÚxµÄ·½³Ì£ºx+
1
x
=c+
1
c
µÄ½âÊÇx1=c£¬x2=
1
c
£»x-
1
x
=c-
1
c
£¨¼´x+
-1
x
=c+
-1
c
£©µÄ½âÊÇx1=cx2=-
1
c
£»x+
2
x
=c+
2
c
µÄ½âÊÇx1=c£¬x2=
2
c
£»x+
3
x
=c+
3
c
µÄ½âÊÇx1=c£¬x2=
3
c
£»¡­
£¨1£©Çë¹Û²ìÉÏÊö·½³ÌÓë½âµÄÌØÕ÷£¬±È½Ï¹ØÓÚxµÄ·½³Ìx+
m
x
=c+
m
c
(m¡Ù0)
ÓëËüÃǵĹØϵ£¬²ÂÏëËüµÄ½âÊÇʲô£¿²¢ÀûÓá°·½³ÌµÄ½â¡±µÄ¸ÅÄî½øÐÐÑéÖ¤£®
£¨2£©ÓÉÉÏÊöµÄ¹Û²ì¡¢±È½Ï¡¢²ÂÏë¡¢ÑéÖ¤£¬¿ÉÒԵóö½áÂÛ£º
Èç¹û·½³ÌµÄ×ó±ßÊÇδ֪ÊýÓëÆäµ¹ÊýµÄ±¶ÊýµÄºÍ£¬·½³ÌµÄÓұߵÄÐÎʽÓë×ó±ßÍêÈ«Ïàͬ£¬Ö»ÊÇ°ÑÆäÖеÄδ֪Êý»»³ÉÁËij¸ö³£Êý£¬ÄÇôÕâÑùµÄ·½³Ì¿ÉÒÔÖ±½ÓµÃ½â£¬ÇëÓÃÕâ¸ö½áÂÛ½â¹ØÓÚxµÄ·½³Ì£ºx+
2
x-1
=a+
2
a-1
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÔĶÁÀí½â

ÔĶÁÀí½âÌ⣺ÔĶÁÏÂÁвÄÁÏ£¬¹ØÓÚxµÄ·½³Ì£ºx+
1
x
=c+
1
c
µÄ½âÊÇx1=c£¬x2=
1
c
£»
x-
1
x
=c-
1
c
£¨¼´x+
-1
x
=c+
-1
c
£©µÄ½âÊÇx1=c£¬x2=-
1
c
£»x+
2
x
=c+
2
c
µÄ½âÊÇ£ºx1=c£¬x2=
2
c
£¬¡­
£¨1£©¹Û²ìÉÏÊö·½³Ì¼°Æä½âµÄÌØÕ÷£¬Ö±½Óд³ö¹ØÓÚxµÄ·½³Ìx+
m
x
=c+
m
c
£¨m¡Ù0£©µÄ½â£¬²¢ÀûÓá°·½³ÌµÄ½â¡±µÄ¸ÅÄî½øÐÐÑéÖ¤£»
£¨2£©Í¨¹ý£¨1£©µÄÑéÖ¤Ëù»ñµÃµÄ½áÂÛ£¬ÄãÄܽâ³ö¹ØÓÚxµÄ·½³Ì£ºx+
2
x-1
=a+
2
a-1
µÄ½âÂð£¿ÈôÄÜ£¬ÇëÇó³ö´Ë·½³ÌµÄ½â£»Èô²»ÄÜ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÔĶÁÀí½â

ÔĶÁÏÂÁвÄÁÏ£º
¹ØÓÚxµÄ·½³Ì£ºx+
1
x
=c+
1
c
µÄ½âÊÇx1=c£¬x2=
1
c
£»x+
2
x
=c+
2
c
µÄ½âÊÇx1=c£¬x2=
2
c
£»x+
3
x
=c+
3
c
µÄ½âÊÇx1=c£¬x2=
3
c
£»¡­
£¨1£©Çë¹Û²ìÉÏÊö·½³ÌÓë½âµÄÌØÕ÷£¬±È½Ï¹ØÓÚx+
m
x
=c+
m
c
£¨m¡Ù0£©ÓëËüÃǵĹØϵ£¬²ÂÏëËüµÄ½âÊÇʲô£¬²¢ÀûÓá°·½³ÌµÄ½â¡±µÄ¸ÅÄî½øÐÐÑéÖ¤£®
£¨2£©ÇëÓÃÕâ¸ö½áÂÛ½â¹ØÓÚxµÄ·½³Ì£ºx+
2
x-1
=a+
2
a-1
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÔĶÁÀí½â

ÔĶÁÏÂÁвÄÁÏ£º¹ØÓÚxµÄ·½³Ì£ºx+
1
x
=c+
1
c
µÄ½âÊÇx1=c£¬x2=
1
c
£»x-
1
x
=c-
1
c
(¼´x+
-1
x
=c+
-1
c
)µÄ½âÊÇx1=c£¬x2=-
1
c
£»x+
2
x
=c+
2
c
µÄ½âÊÇx1=c£¬x2=
2
c
£»x+
3
x
=c+
3
c
µÄ½âÊÇx1=c£¬x2=
3
c
¡­
£¨1£©Çë¹Û²ìÉÏÊö·½³Ì½âµÄÌØÕ÷£¬±È½Ï¹ØÓÚxµÄ·½³Ìx+
m
x
=c+
m
c
(m
¡Ù0£©ÓëËüÃǵĹØϵ£¬²ÂÏëËüµÄ½âÊÇ
x1=c£¬x2=
m
c
x1=c£¬x2=
m
c

£¨2£©ÀûÓÃÉÏÊö½áÂÛÇó¹ØÓÚxµÄ·½³Ìx+
2
x-1
=a+
2
a-1
µÄ½â£®£¨²»Òª½øÐмìÑ飩£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸