精英家教网 > 初中数学 > 题目详情
如图,已知半圆O的直径AB,将一个三角板的直角顶点固定在圆心O上,当三角板绕着点O转动时,三角板的两条直角边与半圆圆周分别交于C、D两点,连接AD、BC交于点E.
(1)求证:△ACE∽△BDE;
(2)求证:BD=DE恒成立.
分析:(1)根据圆周角定理及对顶角相等可知∠CAE=∠DBE,∠AEC=∠BED,故可得出结论;
(2)由直角三角板的性质可知∠COD=90°,由圆周角定理可知∠DBE=∠DEB=45°,故△BDE是等腰直角三角形,故BD=DE恒成立.
解答:证明:(1)∵∠CAE=∠DBE,∠AEC=∠BED
∴△ACE∽△BDE;

(2)∵∠COD=90°
∴∠DBE=
1
2
×90°=45°,
∵AB为直径,
∴∠BDE=90°,
∴∠DEB=∠DBE=45°,
∴BD=DE恒成立.
点评:本题考查的是相似三角形的判定,圆周角定理及等腰三角形的性质,根据题意判断出△BDE是等腰直角三角形是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图是某学校田径体育场一部分的示意图,第一条跑道每圈为400米,跑道分直道和弯道,直道为长相等的平行线段,弯道为同心的半圆型,弯道与直道相连接,已知直精英家教网道BC的长86.96米,跑道的宽为l米.(π=3.14,结果精确到0.01)
(1)求第一条跑道的弯道部分
AB
的半径.
(2)求一圈中第二条跑道比第一条跑道长多少米?
(3)若进行200米比赛,求第六道的起点F与圆心O的连线FO与OA的夹角∠FOA的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•咸丰县二模)如图,已知在Rt△ABC中,∠ACB=90°,AB=10,分别以AC、BC为直经作半圆,面积分别记为S1、S2,则S1+S2的值等于(  )

查看答案和解析>>

科目:初中数学 来源:初中数学解题思路与方法 题型:047

已知如图,AB是半圆直经,△ACD内接于半⊙O,CE⊥AB于E,延长AD交EC的延长线于F,求证:AC·CD=AD·FC.

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

如图,已知在Rt△ABC中,∠ACB=90°,AB=10,分别以AC、BC为直经作半圆,面积分别记为S1、S2,则S1+S2的值等于


  1. A.
    8πB
  2. B.
    16π
  3. C.
    25π
  4. D.
    12.5π

查看答案和解析>>

科目:初中数学 来源:2012年湖北省恩施州咸丰县中考数学二模试卷(解析版) 题型:选择题

如图,已知在Rt△ABC中,∠ACB=90°,AB=10,分别以AC、BC为直经作半圆,面积分别记为S1、S2,则S1+S2的值等于( )

A.8πB
B.16π
C.25π
D.12.5π

查看答案和解析>>

同步练习册答案