精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC,AB于点E,F.

(1)试判断直线BC与⊙O的位置关系,并说明理由;

(2)若BD=2,BF=2,求阴影部分的面积(结果保留π).

【答案】(1)证明见解析;(2)

【解析】试题分析:(1)连接OD,证明OD∥AC,即可证得∠ODB=90°,从而证得BC是圆的切线;

2)在直角三角形OBD中,设OF=OD=x,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即为圆的半径,求出圆心角的度数,直角三角形ODB的面积减去扇形DOF面积即可确定出阴影部分面积.

试题解析:(1BC⊙O相切.

证明:连接OD∵AD∠BAC的平分线,∴∠BAD=∠CAD.又∵OD=OA∴∠OAD=∠ODA∴∠CAD=∠ODA∴OD∥AC∴∠ODB=∠C=90°,即OD⊥BC.又∵BC过半径OD的外端点D∴BC⊙O相切.

2)设OF=OD=x,则OB=OF+BF=x+2,由勾股定理得:OB2=OD2+BD2,即(x+22=x2+12,解得:x=2,即OD=OF=2∴OB=2+2=4∵Rt△ODB中,OD=OB∴∠B=30°∴∠DOB=60°∴S扇形AOB==,则阴影部分的面积为SODB﹣S扇形DOF=×2×=.故阴影部分的面积为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图所示,在平面直角坐标系中,C经过坐标原点O,且与x轴,y轴分别相交于M(4,0),N(0,3)两点.已知抛物线开口向上,与C交于N,H,P三点,P为抛物线的顶点,抛物线的对称轴经过点C且垂直x轴于点D.

(1)求线段CD的长及顶点P的坐标;

(2)求抛物线的函数表达式;

(3)设抛物线交x轴于A,B两点,在抛物线上是否存在点Q,使得S四边形OPMN=8SQAB,且QAB∽△OBN成立?若存在,请求出Q点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD的对角线AC,BD相交于点O,∠ACB=30°,BC=3,分别过点B,C作BE∥AC,CE∥BD,且BE,CE相交于点E.
(1)求AB,AC的长;
(2)判断四边形BOCE的形状.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列图案中是中心对称图形但不是轴对称图形的是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将连续正整数按如下个规律排列

第一列

第二列

第三列

第四列

第五列

………

第一行

1

2

3

4

第二行

8

7

6

5

第三行

9

10

11

12

第四行

16

15

14

13

第五行

17

18

19

20

………

若正整数2019位于第a行、第b列,则a+b_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标系中,RtABC的直角边AC在x轴上,ACB=90°,AC=1,反比例函数(k0)的图象经过BC边的中点D(3,1)

(1)求这个反比例函数的表达式;

(2)若ABC与EFG成中心对称,且EFG的边FG在y轴的正半轴上,点E在这个函数的图象上.

求OF的长;

连接AF,BE,证明四边形ABEF是正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了让同学们了解自己的体育水平,初二1班的体育刘老师对全班45名学生进行了一次体育模拟测试(得分均为整数),成绩满分为10分,1班的体育委员根据这次测试成绩,制作了统计图和分析表如下:

初二1班体育模拟测试成绩分析表

平均分

方差

中位数

众数

男生

2

8

7

女生

7.92

1.99

8

根据以上信息,解答下列问题:
(1)这个班共有男生人,共有女生人;
(2)补全初二1班体育模拟测试成绩分析表;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】命题“对顶角相等”的题设是________;结论是________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将直线y=x+b沿y轴向下平移3个单位长度,点A(﹣1,2)关于y轴的对称点落在平移后的直线上,则b的值为

查看答案和解析>>

同步练习册答案