分析 先根据菱形的性质求出其边长,再作E关于AC的对称点E′,连接E′F,则E′F即为PE+PF的最小值,再根据菱形的性质求出E′F的长度即可.
解答 解:∵四边形ABCD是菱形,对角线AC=6,BD=8,
∴AB=$\sqrt{{3}^{2}+{4}^{2}}$=5,
作E关于AC的对称点E′,作E′F⊥BC于F交AC于P,连接PE,则E′F即为PE+PF的最小值(垂线段最短),
∵$\frac{1}{2}$•AC•BD=AD•E′F,
∴E′F=$\frac{24}{5}$,
∴PE+PF的最小值为$\frac{24}{5}$
故选答案为$\frac{24}{5}$.
点评 本题考查的是轴对称-最短路线问题、菱形的性质、垂线段最短等知识,熟知菱形的性质是解答此题的关键,学会利用对称,根据垂线段最短解决最值问题,属于中考常考题型.
科目:初中数学 来源: 题型:选择题
A. | 2$\sqrt{2}$ | B. | 2$\sqrt{5}$ | C. | 4$\sqrt{2}$ | D. | 4$\sqrt{5}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com