精英家教网 > 初中数学 > 题目详情
7.如图,已知△ABC,请用尺规作图,在BC上找一点M,使得AM+MC=BC(保留作图痕迹,不写作法).

分析 作AB的垂直平分线交BC于M,根据垂直平分线的性质可得AM=BM,所以AM+MC=BM+MC=BC.

解答 解:如图,点M即为所作.

点评 本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

17.如图,在?ABCD中,对角线AC与BD相交于点E,∠AEB=45°,BD=4,将△ABC沿直线AC翻折180°后与原图形在同一平面内,若点B的落点记为B′,则DB′的长为(  )
A.2$\sqrt{2}$B.2$\sqrt{3}$C.4$\sqrt{2}$D.$\sqrt{5}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.某超市为了答谢顾客,凡在本超市购物的顾客,均可凭购物小票参与抽奖活动,奖品是三种瓶装饮料,它们分别是:绿茶、红茶和可乐,抽奖规则如下:①一个材质均匀可自由转动的转盘,转盘被等分成五个扇形区域,每个区域上分别写有“可”、“绿”、“乐”、“茶”、“红”字样;②参与一次抽奖活动的顾客可进行两次“有效随机转动”(当转动转盘,转盘停止后,可获得指针所指区域的字样,我们称这次转动为一次“有效随机转动”);③假设顾客转动转盘,转盘停止后,指针指向两区域的边界,顾客可以再转动转盘,直到转动为一次“有效随机转动”;④当顾客完成一次抽奖活动后,记下两次指针所指区域的两个字,只要这两个字和奖品名称的两个字相同(与字的顺序无关),便可获得相应奖品一瓶:不相同时,不能获得任何奖品.
根据以上规则,回答下列问题:
(1)求一次“有效随机转动”可获得“乐”字的概率;
(2)有一名顾客凭本超市的购物小票,参与了一次抽奖活动,请你用列表或树状图等方法,求该顾客经过两次“有效随机转动”后,获得一瓶可乐的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,在斜坡顶部有一铁塔AB,B是CD的中点,CD是水平的.在阳光的照射下,塔影DE留在斜坡面上.在同一时刻,小明站在点E处,其影子EF在直线DE上,小华站在点G处,影子GH在直线CD上,他们的影子长分别为2m和1m.已知CD=12m,DE=18m,小明和小华身高均为1.6m,那么塔高AB为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.计算:(-$\frac{1}{2}$)-2+$\sqrt{8}$+|1-$\sqrt{2}$|0-2sin60°+tan60°.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.如图,在Rt△ABC中,∠C=90°,AB=13,AC=12,经过点C且与AB边相切的动圆与BC、CA分别相交于点M、N,则线段MN长度的最小值为$\frac{60}{13}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.若关于x的一元二次方程kx2-4x+1=0有实数根,则k的取值范围是(  )
A.k=4B.k>4C.k≤4且k≠0D.k≤4

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.阅读资料:
如图1,在平面直角坐标系xOy中,A,B两点的坐标分别为A(x1,y1),B(x2,y2),由勾股定理得AB2=${{|x}_{2}{-x}_{1}|}^{2}$+${{|y}_{2}{-y}_{1}|}^{2}$,所以A,B两点间的距离为AB=$\sqrt{{{(x}_{2}{-x}_{1})}^{2}{+{(y}_{2}{-y}_{1})}^{2}}$.
我们知道,圆可以看成到圆心距离等于半径的点的集合,如图2,在平面直角坐标系xOy中,A(x,y)为圆上任意一点,则A到原点的距离的平方为OA2=|x-0|2+|y-0|2,当⊙O的半径为r时,⊙O的方程可写为:x2+y2=r2
问题拓展:如果圆心坐标为P(a,b),半径为r,那么⊙P的方程可以写为(x-a)2+(y-b)2=r2
综合应用:如图3,⊙P与x轴相切于原点O,P点坐标为(0,3),A是⊙P上一点,连接OA,使tan∠POA=$\frac{3}{4}$,作PD⊥OA,垂足为D,延长PD交x轴于点B,连接AB.问:是否存在到四点O,P,A,B距离都相等的点Q?若存在,求Q点坐标,并写出以Q为圆心,以OQ为半径的⊙O的方程;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,直线y=x+1与x轴交于点B,y轴交于A点,与反比例函数y=$\frac{k}{x}$(x>0)的图象交于点M,过M作MH⊥x轴于点H,且AO=$\frac{1}{2}$MH.
(1)求k的值;
(2)在y轴上是否存在点P,使得点P、A、H、M为顶点的四边形是平行四边形?若存在,求出P点坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案