【题目】如图①,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)经过点D(2,4),与x轴交于A,B两点,与y轴交于点C(0,4),连接AC,CD,BC, 其且AC=5.
(1)求抛物线的解析式;
(2)如图②,点P是抛物线上的一个动点,过点P作x轴的垂线l,l分别交x轴于点E,交直线AC于点M.设点P的横坐标为m.当0<m≤2时,过点M作MG∥BC,MG交x轴于点G,连接GC,则m为何值时,△GMC的面积取得最大值,并求出这个最大值;
(3)当-1<m≤2时,是否存在实数m,使得以P,C,M为顶点的三角形和△AEM相似?若存在,求出相应m的值;若不存在,请说明理由.
【答案】(1)y=﹣x2+x+4;(2)当m=时,S最大,即S最大=2;(3)2或
【解析】
(1)先通过勾股定理求的点A的坐标,把A、C、D三点坐标代入即可求得抛物线的解析式;
(2)由A、C坐标可求得直线AC解析式,再用m表示出点M坐标,表示出ME,再由△BCO∽△GME可表示出GE,求得OG,再利用面积的和差可得到△GMC的面积,利用二次函数的性质可求得其最大值;
(3)分∠CPM=90°和∠PCM=90°两种情况,当∠CPM=90°时,可得PC∥x轴,容易求得P点坐标和m的值;当∠PCM=90°时,设PC交x轴于点F,可利用相似三角形的性质先求得F点坐标,可求得直线CF的解析式,再联立抛物线解析式可求得P点坐标和相应的m的值.
解(1)∵点C(0,4),
∴OC=4,
∵AC=5,
∴在Rt△AOC中,∠AOC=90°
OA=
∴ A(3,0)
将A(3,0)、C(0,4)D(2,4)代入抛物线y=ax2+bx+c(a≠0)中
得 ,
解得,
∴抛物线解析式为y=-x2+x+4;
(2)由A(3,0),C(0,4)可得直线AC解析式为y=-x+4,
∴M坐标为(m,-m+4),
∵MG∥BC,
∴∠CBO=∠MGE,且∠COB=∠MEG=90°,
∴△BCO∽△GME,
∴,即,
∴GE=-m+1,
∴OG=OE-GE=m-1
∴
,
∴当m=时,S最大,即S最大=2;
(3)根据题意可知△AEM是直角三角形,而△MPC中,∠PMC=∠AME为锐角,
∴△PCM的直角顶点可能是P或C,
第一种情况:当∠CMPM=90°时,如图,
则CP∥x轴,此时点P与点D重合,
∴点P(2,4),此时m=2;
第二种情况:当∠PCM=90°时,如图,
如图,延长PC交x轴于点F,由△FCA∽△COA,得,
∴AF=,
∴OF=,
∴F(-,0),
∴直线CF的解析式为y=x+4,
联立直线CF和抛物线解析式可得,
解得,,
∴P坐标为(,),此时m=;
综上可知存在满足条件的实数m,其值为2或
科目:初中数学 来源: 题型:
【题目】如图,在中,,点从点出发沿向点运动,点从点出发沿向点运动,点和点同时出发,速度相同,到达点或点后运动停止.
(1)求证:;
(2)若,求的度数;
(3)若的外心在其内部时,直接写出的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知y关于x的二次函数y=x-bx+b+b-5的图象与x轴有两个公共点.
(1)求b的取值范围;
(2)若b取满足条件的最大整数值,当m≤x≤时,函数y的取值范围是n≤y≤6-2m,求m,n的值;
(3)若在自变量x的值满足b≤x≤b+3的情况下,对应函数y的最小值为,求此时二次函数的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】【发现证明】
如图1,点E,F分别在正方形ABCD的边BC,CD上,∠EAF=45°,试判断BE,EF,FD之间的数量关系.
小聪把△ABE绕点A逆时针旋转90°至△ADG,通过证明△AEF≌△AGF;从而发现并证明了EF=BE+FD.
【类比引申】
(1)如图2,点E、F分别在正方形ABCD的边CB、CD的延长线上,∠EAF=45°,连接EF,请根据小聪的发现给你的启示写出EF、BE、DF之间的数量关系,并证明;
【联想拓展】
(2)如图3,如图,∠BAC=90°,AB=AC,点E、F在边BC上,且∠EAF=45°,若BE=3,EF=5,求CF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了解某校九年级男生1000米跑的水平,从中随机抽取部分男生进行测试,并把测试成绩分为D、C、B、A四个等次绘制成如图所示的不完整的统计图,请你依图解答下列问题:
(1)a= ,b= ,c= ;
(2)扇形统计图中表示C等次的扇形所对的圆心角的度数为 度;
(3)学校决定从A等次的甲、乙、丙、丁四名男生中,随机选取两名男生参加全市中学生1000米跑比赛,请用列表法或画树状图法,求甲、乙两名男生同时被选中的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】今年 3 月 12 日植树节期间, 学校预购进 A、B 两种树苗,若购进 A种树苗 3 棵,B 种树苗 5 棵,需 2100 元,若购进 A 种树苗 4 棵,B 种树苗 10棵,需 3800 元.
(1)求购进 A、B 两种树苗的单价;
(2)若该单位准备用不多于 8000 元的钱购进这两种树苗共 30 棵,求 A 种树苗至少需购进多少棵?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC.将△ABC沿着BC方向平移得到△DEF,其中点E在边BC上,DE与AC相交于点O.连接AE、DC、AD,当点E在什么位置时,四边形AECD为矩形,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,C为⊙O上一点,AD⊥CD,(点D在⊙O外)AC平分∠BAD.
(1)求证:CD是⊙O的切线;
(2)若DC、AB的延长线相交于点E,且DE=12,AD=9,求BE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图①表示一个时钟的钟面垂直固定于水平桌面上,其中分针上有一点,当钟面显示3点30分时,分针垂直于桌面,点距离桌面的高度为公分,图②表示钟面显示3点45时,点距桌面的高度为公分,若钟面显示3点55时,点距离桌面的高度为__________公分.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com