分析 先求出OA,OB,进而求出AB,再判断出△PAB的AB边上的高最大时必过⊙O的圆心O,最后利用面积求出OC即可得出CP即可.
解答 解:如图,
∵直线y=$\frac{3}{4}$+3与坐标轴交于A、B两点,
∴A(-4,0),B(0,3),
∴OA=4,OB=3,
在Rt△AOB中,根据勾股定理得,AB=5,
∵△PAB中,AB=5是定值,
∴要使△PAB的面积最大,即⊙O上的点到AB的距离最大,
∴过点O作OC⊥AB于C,CO的延长线交⊙O于P,此时S△PAB的面积最大,
∴S△AOB=$\frac{1}{2}$OA•OB=$\frac{1}{2}$AB•OC,
∴OC=$\frac{OA•OB}{AB}$=$\frac{4×3}{5}$=$\frac{12}{5}$,
∵⊙O的半径为2,
∴CP=OC+OP=$\frac{22}{5}$,
∴S△PAB=$\frac{1}{2}$AB•CP=$\frac{1}{2}$×5×$\frac{22}{5}$=11.
故答案为11.
点评 此题考查了圆的性质,圆中最大的弦,一次函数图象上点的坐标特征,解本题的关键是确定出三角形PAB的AB边上的高.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | ①②④⑤ | B. | ①②③④⑤ | C. | ①②④ | D. | ①④ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 15° | B. | 20° | C. | 30° | D. | 25° |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com