精英家教网 > 初中数学 > 题目详情
20.如图,在等边△ABC中,点D是 AB边上一点,连接CD,将线段CD绕点C按顺时针方向旋转60°后得到CE,连接AE.求证:AE∥BC.

分析 根据等边三角形的性质得出AC=BC,∠B=∠ACB=60°,根据旋转的性质得出CD=CE,∠DCE=60°,求出∠BCD=∠ACE,根据SAS推出△BCD≌△ACE,根据全等得出∠EAC=∠B=60°,求出∠EAC=∠ACB,根据平行线的判定得出即可.

解答 解:∵△ABC是等边三角形,
∴AC=BC,∠B=∠ACB=60°.
∵线段CD绕点C顺时针旋转60°得到CE,
∴CD=CE,∠DCE=60°,
∴∠DCE=∠ACB,
即∠BCD+∠DCA=∠DCA+∠ACE,
∴∠BCD=∠ACE,
在△BCD与△ACE中,$\left\{\begin{array}{l}{BC=AC}\\{∠BCD=∠ACE}\\{DC=EC}\end{array}\right.$
∴△BCD≌△ACE,
∴∠EAC=∠B=60°,
∴∠EAC=∠ACB,
∴AE∥BC.

点评 本题考查了平行线的判定,等边三角形的性质,全等三角形的性质和判定,旋转的性质的应用,能综合运用定理进行推理是解此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

10.计算:-3+(-4)-(-5)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.下列结论:
①数轴上的点只能表示有理数;
②任何一个无理数都能用数轴上的点表示;
③实数与数轴上的点一一对应;
④有理数有无限个,无理数有有限个.
其中,正确的结论有2个.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.将抛物线y=-2x2+1向右平移1个单位长度,再向上平移1个单位长度所得的抛物线解析式为y=-2(x-1)2+2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,E、F分别为线段AC上的两个点,且DE⊥AC于E,BF⊥AC于F,若AB=CD,AF=CE,BD交AC于点M.求证:MB=MD,ME=MF.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.若x2-(m-1)x+36是一个完全平方式,则m的值为-11或13.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.计算:
(1)(x4+1)(x2+1)(x+1)(x-1);
(2)$\frac{1}{2}$(1+$\frac{1}{2}$)(1+$\frac{1}{{2}^{2}}$)(1+$\frac{1}{{2}^{4}}$)…(1+$\frac{1}{{2}^{64}}$).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.甲乙两支篮球队进行了5场比赛,比赛成绩绘制成了统计图(如图).
(1)请根据统计图填写表
平均数中位数方差
908770.8
(2)如果从两队中选派一支球队参加篮球锦标赛,根据上述统计,从平均分、方差以及获胜场数这三个方面分别进行简要分析,你认为选派哪支球队参赛更能取得好成绩?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,△ABC≌△ADE,BC的延长线交DA于点F,交DE于点G,∠AED=105°,∠CAD=10°,∠B=25°,求∠DFB和∠DGB的度数.

查看答案和解析>>

同步练习册答案