精英家教网 > 初中数学 > 题目详情
如图,已知在△ABC中,DE∥BC,分别交边AB、AC于点D、E,且DE将△ABC分成面积相等的两部分.把△ADE沿直线DE翻折,点A落在点F的位置上,DF交BC于点G,EF交BC于点H,那么
GH
DE
=
2-
2
2-
2
分析:连接AF,交DE于M,交BC于N,根据把△ADE沿直线DE翻折,点A落在点F的位置上得出AF⊥BC.AM=FM,证△ADE∽△ABC,得出
S△ADE
S△ABC
=
1
2
,求出
AM
AN
=
1
2
,求出
FN
FM
=
1-(
2
-1)
1
=2-
2
,证△FHG∽△FED得出
GH
DE
=
FN
FM
=2-
2
解答:解:
连接AF,交DE于M,交BC于N,
∵把△ADE沿直线DE翻折,点A落在点F的位置上,
AF⊥BC.AM=FM,
∵DE∥DE
∴△ADE∽△ABC,AF⊥BC,
∵DE将△ABC分成面积相等的两部分,
S△ADE
S△ABC
=
1
2

AM
AN
=
1
2

AM
MN
=
1
2
-1

FM
MN
=
1
2
-1

FN
FM
=
1-(
2
-1)
1
=2-
2

∵BC∥DE,
∴△FHG∽△FED,
GH
DE
=
FN
FM
=2-
2

故答案为:2-
2
点评:本题考查了相似三角形的性质和判定,平行线分线段成比例定理,主要考查学生运用定理进行推理和计算的能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、如图,已知在△ABC中,AD、AE分别是BC边上的高和中线,AB=9cm,AC=7cm,BC=8m,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在△ABC中,BD为∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD于M,PN⊥CD于N,求证:PM=PN.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在△ABC中,AB=AC,∠A=100°,CD是∠ACB的平分线.
(1)∠ADC=
60°
60°

(2)求证:BC=CD+AD.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在△ABC中,∠B与∠C的平分线交于点P.当∠A=70°时,则∠BPC的度数为
125°
125°

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在△ABC中,CD=CE,∠A=∠ECB,试说明CD2=AD•BE.

查看答案和解析>>

同步练习册答案