A. | 3 | B. | 2 | C. | 1 | D. | 无法确定 |
分析 由题意,可将x,y及z的值代入方程组得到关于a,b,c的方程组,将方程组中三个方程左右两边相加,变形后即可求出a+b+c的值.
解答 解:由题意将$\left\{\begin{array}{l}{x=1}\\{y=2}\\{z=3}\end{array}\right.$代入方程组得:
$\left\{\begin{array}{l}{a+2b=2①}\\{2b+3c=3②}\\{c+3a=7③}\end{array}\right.$,
①+②+③得:a+2b+2b+3c+c+3a=2+3+7,
即4a+4b+4c=4(a+b+c)=12,
则a+b+c=3.
故选A.
点评 此题考查了三元一次方程组的解,以及解三元一次方程组,方程组的解为能使方程组中每一个方程左右两边相等的未知数的值,本题的技巧性比较强,求a+b+c不要求出a,b及c的值,而是整体求出.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | a-2>b-2 | B. | -2a>-2b | C. | 2a>2b | D. | $\frac{a}{2}$>$\frac{b}{2}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com