精英家教网 > 初中数学 > 题目详情
精英家教网如图所示,四边形ABCD是正方形,对角线AC与BD相交于O,MN∥AB,且分别与AO,BO交于M、N,求证:(1)BM=CN;(2)BM⊥CN.
分析:(1)根据平行线的性质求出∠OMN=∠ONM=∠OAB=∠OBA=45°,AM=BN,进而求证△ABM≌△BCN,得到BM=CN;
(2)因为∠ABM+∠CBM=90°,所以∠BCN+∠CBM=90°,BM⊥CN.
解答:证明:(1)∵MN∥AB,
∴∠OMN=∠OAB,精英家教网∠ONM=∠OBA
∵OA=OB,
∴∠OAB=∠OBA
∴∠OMN=∠ONM,
∴OM=ON
∴AM=OA-OM=OB-ON=BN,
在△ABM和△BCN中,
AB=BC
∠MAB=∠NBC
AM=BN

∴△ABM≌△BCN(SAS),
∴BM=CN.

(2)由△ABM≌△BCN得,∠ABM=∠BCN,
又∵∠ABM+∠CBM=90°,
∴∠BCN+∠CBM=90°,
∴CN⊥BM.
点评:考查了正方形的性质和全等三角形的判定与性质,根据正方形的性质求证判定三角形全等是解决本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

21、如图所示,四边形ABCD是平行四边形,E,F分别在AD,CB的延长线上,且DE=BF,连接FE分别交AB,CD于点H,G.
(1)观察图中有
2
对全等三角形;
(2)聪明的你如果还有时间,请在上图中连接AF,CE,你将发现图中出现了更多的全等三角形.请在下面的横线上再写出两对与(1)不同的全等三角形(不用证明).1
△EDC≌△FBA
,2
△EAF≌△FCE

查看答案和解析>>

科目:初中数学 来源: 题型:

12、如图所示,四边形ABCD为⊙O的内接四边形,E为AB延长线的上一点,∠CBE=40°,则∠AOC等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,四边形ABCD中,E、F分别为AD、BC的中点.
(1)当AB∥CD而AD与BC不平行时,四边形ABCD称为
 
形,线段EF叫做其
 
,EF与AB+CD的数量关系为
 

(2)当AB与CD不平行,AD与BC也不平行时,猜想EF与AB+CD的数量关系,并证明你的猜想.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,四边形ABCD是正方形,E、F是AB、BC的中点,连接EC交DB、DF于G、H,则EG:GH:HC=
 
精英家教网

查看答案和解析>>

科目:初中数学 来源:新课标 读想练同步测试 七年级数学(下) 北师大版 题型:044

如图所示,四边形AB-CD中,AB∥CD,P为BC上一点,设∠CDP=α,∠CPD=β,试说明,无论点P在BC上如何移动,总有α+β=∠B.

查看答案和解析>>

同步练习册答案