精英家教网 > 初中数学 > 题目详情

【题目】小明在他家里的时钟上安装了一个电脑软件,他设定当钟声在n点钟响起后,下一次则在(3n﹣1)小时后响起,例如钟声第一次在3点钟响起,那么第2次在(3×3﹣1=8)小时后,也就是11点响起,第3次在(3×11﹣1=32)小时后,即7点响起,以此类推…;现在第1次钟声响起时为2点钟,那么第3次响起时为_____点,第2017次响起时为_____点(如图钟表,时间为12小时制).

【答案】 3; 11

【解析】试题解析:第一次在2点钟响起,第二次在3×2﹣1=5小时后响起,即7点响起;第三次在3×7﹣1=20小时后响起,即3点响起;第四次在3×3﹣1=8小时后响起,即11点响起;第五次在3×11﹣1=32小时后响起,即7点响起;

…∴除了第一次之外,接下来每三次为一个周期循环,∵2017÷3=607,∴2017次响起的时间与第四次时间一致,为11

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,分别以直角△ABC的斜边AB,直角边AC为边向△ABC外作等边△ABD和等边△ACEFAB的中点,DEAB交于点GEFAC交于点H∠ACB=90°∠BAC=30°.给出如下结论:

EFAC四边形ADFE为菱形;AD=4AGFH=BD;其中正确结论的是( )

A. ①②③ B. ①②④ C. ①③④ D. ②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】王老师对试卷讲评课中学生参与的深度与广度进行评价调查,每位学生最终评价结果为主动质疑、独立思考、专注听讲、讲解题目四项中的一项评价组随机抽取了若干名学生的参与情况,绘制成如图所示的统计图(均不完整),请根据图中所给信息解答下列问题:

(1)在这次评价中,一共抽查了   名学生;

(2)在扇形统计图中,项目主动质疑所在扇形的圆心角度数为   度;

(3)请将条形图补充完整;

(4)如果全校学生有2800名,那么在试卷讲评课中,独立思考的学生约有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】这是一道我们曾经探究过的问题:如图1.等腰直角三角形中,.直线经过点,过于点,过于点.易证得.(无需证明),我们将这个模型称为“一线三等角”或者叫“K形图”.接下来,我们就利用这个模型来解决一些问题:

(模型应用)

(1)如图2.已知直线l1与与坐标轴交于点AB.以AB为直角边作等腰直角三角形ABC,若存在,请求出C的坐标;不存在,若说明理由.

(2)如图3已知直线l1与坐标轴交于点AB.将直线l1绕点A逆时针旋转45°至直线l2.直线l2x轴上方的图像上是否存在一点Q,使得△QAB是以QA为底的等腰直角三角形?若存在,请求出直线BQ的函数关系式;若不存在,说明理由.

(拓展延伸)

3)直线AB轴负半轴、轴正半轴分别交于AB两点.分别以OBAB为边,点B为直角顶点在第一、二象限内作等腰直角△OBF和等腰直角△ABE,连EFy轴于P点,如图4,△EPB的面积是否确定?若确定,请求出具体的值;若不确定,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知点A(3,6)、B(9,一3),以原点O为位似中心,相似比为,把ABO缩小,则点A的对应点A的坐标是

A.(1,2)

B.(9,18)

C.(9,18)或(9,18)

D.(1,2)或(1,2)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O的直径,弦BC,DE相交于点F,且DEAB于点G,过点C作⊙O的切线交DE的延长线于点H.

(1)求证:HC=HF;

(2)若⊙O的半径为5,点FBC的中点,tanHCF=m,写出求线段BC长的思路.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,学校旗杆附近有一斜坡,小明准备测量旗杆AB的高度,他发现当斜坡正对着太阳时,旗杆AB的影子恰好落在水平地面和斜坡的坡面上,此时小明测得水平地面上的影子长BC=20米,斜坡坡面上的影子CD=8米,太阳光AD与水平地面BC30°角,斜坡CD与水平地面BC45°的角,求旗杆AB的高度.(=1.732,=1.414,=2.449,精确到1米).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知一次函数的图象交轴于点,交轴于点,点轴正半轴上,点在射线上,且垂直轴于点

坐标为________,点坐标为________.

操作:将一足够大的三角板的直角顶点放在射线或射线上,一直角边始终过点,另一直角边与轴相交于点.问是否存在这样的点,使以点为顶点的三角形与全等?若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列材料:通过小学的学习我们知道,分数可分为真分数假分数,而假分数都可化为带分数,如:我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为假分式;当分子的次数小于分母的次数时,我们称之为真分式

这样的分式就是假分式;再如:这样的分式就是真分式类似的,假分式也可以化为带分式(即:整式与真分式的和的形式)

如:

解决下列问题:

(1)分式______分式(真分式假分式”)

(2)将假分式化为带分式;

(3)如果x为整数,分式的值为整数,求所有符合条件的x的值.

查看答案和解析>>

同步练习册答案