精英家教网 > 初中数学 > 题目详情

【题目】不能镶嵌成平面图案的正多边形组合为(  )
A.正八边形和正方形
B.正五边形和正十边形
C.正六边形和正三角形
D.正六边形和正八边形

【答案】D
【解析】正多边形的组合能否构成平面镶嵌,关键是看位于同一顶点处的几个角之和能否为360°.若能,则说明能镶嵌;反之,则说明不能镶嵌.
A、正方形和正八边形内角分别为90°、135°,由于90°+135°×2=360°,故能镶嵌;
B、正五边形和正十边形内角分别为108°、144°,由于108°×2+144°=360°,故能镶嵌.
C、正六边形和正三角形内角分别为120°、60°,由于60°×2+120°×2=360°,故能镶嵌;
D、正六边形和正八边形内角分别为120°、135°,由于120m+135n=360,得m=5-n,显然n取任何正整数时,m不能得正整数,故不能镶嵌.
故选D.
【考点精析】解答此题的关键在于理解平面图形的镶嵌的相关知识,掌握用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做平面图形的镶嵌.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在一个布袋中装有红、白两种颜色的小球,它们除颜色外没有任何其他区别.其中红球若干,白球5个,袋中的球已搅匀.若从袋中随机取出1个球,取出红球的可能性大,则红球的个数是(

A. 4B. 5C. 不足4D. 6个或6个以上

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某景区内的环形路是边长为800米的正方形ABCD,如图1和图2.现有1号、2号两游览车分别从出口A和景点C同时出发,1号车顺时针、2号车逆时针沿环形路连续循环行驶,供游客随时免费乘车(上、下车的时间忽略不计),两车速度均为200米/分.
探究:设行驶吋间为t分.
(1)当0≤t≤8时,分别写出1号车、2号车在左半环线离出口A的路程y1 , y2(米)与t(分)的函数关系式,并求出当两车相距的路程是400米时t的值;
(2)t为何值时,1号车第三次恰好经过景点C?并直接写出这一段时间内它与2号车相遇过的次数.
(3)发现:如图2,游客甲在BC上的一点K(不与点B,C重合)处候车,准备乘车到出口A,设CK=x米. 情况一:若他刚好错过2号车,便搭乘即将到来的1号车;
情况二:若他刚好错过1号车,便搭乘即将到来的2号车.
比较哪种情况用时较多?(含候车时间)
决策:己知游客乙在DA上从D向出口A走去.步行的速度是50米/分.当行进到DA上一点P (不与点D,A重合)时,刚好与2号车迎面相遇.
他发现,乘1号车会比乘2号车到出口A用时少,请你简要说明理由:
(4)设PA=s(0<s<800)米.若他想尽快到达出口A,根据s的大小,在等候乘1号车还是步行这两种方式中.他该如何选择?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知苹果每千克m元,则购买2千克共需付_____元.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙、丙、丁四人进行射击测试,每人10次射击成绩平均数均是9.2环,方差分别为S2=0.56,S2=0.60,S2=0.50,S2=0.45,则成绩最稳定的是(
A.甲
B.乙
C.丙
D.丁

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,E为边BC延长线上一点,∠ABC的平分线与∠ACE的平分线交于点D,若∠A=46°,则∠D的度数为(  )

A.46°
B.92°
C.44°
D.23°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平行四边形ABCD中,P是四边形内任意一点,△ABP,△BCP,△CDP,△ADP的面积分别为S1 , S2 , S3 , S4 , 则一定成立的是(
A.S1+S2>S3+S4
B.S1+S2=S3+S4
C.S1+S2<S3+S4
D.S1+S3=S2+S4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE.若∠CAE=65°,∠E=70°,且AD⊥BC,垂足为F,求∠BAC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如果股票指数上涨 30 点记作+30,那么股票指数下跌 20 点记作(

A. ﹣20 B. +20 C. ﹣10 D. +10

查看答案和解析>>

同步练习册答案