【题目】如图,已知点A的坐标为(﹣1,0),且AB=AC=,∠BAC=90°,若B、C均在反比例函数y=的图象上,则k=_____.
【答案】﹣
【解析】
作BD⊥x轴于D,CE⊥x轴于E,如图先证明△ABD≌△ACO得到AE=BD,CE=AD,设C(a,b),则CO=b,AE=a+1,则可表示出B点坐标为(-b-1,a+1),
再根据反比例函数图象上点的坐标特征得到k=ab=(-b-1)(a+1),根据勾股定理得到(a+1)2+b2=()2,然后解关于a、b的方程组,根据-1<a<0,b>0确定a、b的值,然后计算ab即可.
解:作BD⊥x轴于D,CE⊥x轴于E,如图,
∵∠BAC=90°,
∴∠CAE+∠BAD=90°,
∵∠CAE+∠ACO=90°,
∴∠BAD=∠ACO,
在△ABD和△ACO中,
∴△ABD≌△ACO,
∴AE=BD,CE=AD,
设C(a,b),则CO=b,AE=a+1,
∴BD=a+1,AD=b,
∴B点坐标为(﹣b﹣1,a+1),
∵点C和点B在反比例函数y=的图象上,
∴k=ab=(﹣b﹣1)(a+1),
在Rt△ACE中,∵AE2+CE2=AC2,
∴(a+1)2+b2=()2,
解得a=﹣2﹣,b=1﹣(舍去)或a=﹣2,b=1+或a=(1﹣),b=(﹣3﹣)(舍去)或a=(1+),b=(﹣3)(舍去),
∴k=ab=(﹣2)(1+)=﹣.
故答案为﹣.
科目:初中数学 来源: 题型:
【题目】如图,抛物线过点C(4,3),交x轴于A,B两点(点A在点B的左侧).
(1)求抛物线的解析式,并写出顶点M的坐标;
(2)连接OC,CM,求sin∠OCM的值;
(3)若点P是抛物线对称轴上的一个动点,求使△PBC为直角三角形点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,∠CAB的平分线交BC于点D,DE恰好是AB的垂直平分线,垂足为E.若BC=6,则AB的长为( )
A.3B.4C.8D.10
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,一次函数的图像与反比例函数的图像相交于A,B两点,与x轴相交于点C,连接OB,且的面积为.
(1)求反比例函数的表达式;
(2)将直线AB向下平移,若平移后的直线与反比例函数的图像只有一个交点,试说明直线AB向下平移了几个单位长度?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,点C是的中点,连接AC并延长至点D,使CD=AC,点E是OB上一点,且,CE的延长线交DB的延长线于点F,AF交⊙O于点H,连接BH.
(1)求证:BD是⊙O的切线;(2)当OB=2时,求BH的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在边长为的正方形ABCD中,对角线AC与BD相交于点O,P是BD上一动点,过P作EF∥AC,分别交正方形的两条边于点E,F.设BP=x,△OEF的面积为y,则能反映y与x之间关系的图象为( )
A.B.
C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=2x+6与反比例函数的图象交于点A(1,m),与x轴交于点B,平行于x轴的直线y=n(0<n<6)交反比例函数的图象于点M,交AB于点N,连接BM.
(1)求m的值和反比例函数的表达式;
(2)观察图象,直接写出当x>0时,不等式2x+6-<0的解集;
(3)当n为何值时,△BMN的面积最大?最大值是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元),设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.
(1)求y与x的函数关系式并直接写出自变量x的取值范围;
(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知以Rt△ABC的边AB为直径作△ABC的外接圆⊙O,∠B的平分线BE交AC于D,交⊙O于E,过E作⊙O切线EF交BA的延长线于F.
(1)如图1,求证:EF∥AC;
(2)如图2,OP⊥AO交BE于点P,交FE的延长线于点M.求证:△PME是等腰三角形;
(3)如图3,在(2)的条件下:EG⊥AB于H点,交⊙O于G点,交AC于Q点,若sinF=,EQ=5,求PM的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com