精英家教网 > 初中数学 > 题目详情
3.(1)解不等式组$\left\{\begin{array}{l}-2x+1≤-1…(1)\\ \frac{1+2x}{3}>x-1…(2)\end{array}$
(2)如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E,若∠CBF=20°,求∠ADE的度数.

分析 (1)首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集
(2)根据正方形的性质得出∠BAE=∠DAE,再利用SAS证明△ABE与△ADE全等,再利用三角形的内角和解答即可.

解答 解:(1)$\left\{\begin{array}{l}{-2x+1≤-1①}\\{\frac{1+2x}{3}>x-1②}\end{array}\right.$,
由①得,x≥1,
由②得,x<4,
所以,不等式组的解集是1≤x<4;

(2)∵正方形ABCD,
∴AB=AD,∠BAE=∠DAE,
在△ABE与△ADE中,
$\left\{\begin{array}{l}{AB=AD}\\{∠BAE=∠DAE}\\{AE=AE}\end{array}\right.$,
∴△ABE≌△ADE(SAS),
∴∠ABE=∠ADE,
∵∠CBF=20°,
∴∠ABE=70°,
∴∠ADE=70°.

点评 (1)本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.方法与步骤:①求不等式组中每个不等式的解集;②利用数轴求公共部分.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到
(2)此题考查正方形的性质,关键是根据正方形的性质得出∠BAE=∠DAE,再利用全等三角形的判定和性质解答.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

3.用配方法解方程3x2+8x-3=0,下列变形正确的是(  )
A.(x+$\frac{16}{3}$)2=1+($\frac{16}{3}$)2B.(x+$\frac{4}{3}$)2=1+($\frac{4}{3}$)2C.(x-$\frac{8}{3}$)2=1+($\frac{1}{3}$)2D.(x-$\frac{4}{3}$)2=1-($\frac{4}{3}$)2

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.下列计算正确的是(  )
A.2x2-4x2=-2B.3x+x=3x2C.3x•x=3x2D.4x6÷2x2=2x3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.计算或解方程:
(1)${(\sqrt{5}-2)^2}+(\sqrt{5}+1)(\sqrt{5}+3)$
(2)$(3\sqrt{12}-2\sqrt{\frac{1}{3}}+\sqrt{48})÷2\sqrt{3}+(\sqrt{\frac{1}{3}})^{2}$
(3)(x-5)2=2(5-x)              
(4)2x2-4x-6=0(用配方法)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.请写出满足下列条件的一个不等式.
{1}0是这个不等式的一个解:x<1;
{2}-2,-1,0,1都是不等式的解:x<2;
{3}0不是这个不等式的解:x<0;
{4}与X≤-1的解集相同的不等式:x+2≤1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.解方程:
(1)$\left\{\begin{array}{l}{2x+3y=16}\\{x+4y=13}\end{array}\right.$;
(2)$\left\{\begin{array}{l}{\frac{x}{3}+\frac{y}{4}=2}\\{3x-4y=-7}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.解方程或方程组:
(1)3x2-9=0
(2)(x+2)3-32=32
(3)$\left\{\begin{array}{l}x+2y=6\\ 3x+y=8\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.如图,在四边形ABCD中,AC=BD=6,E、F、G、H分别是AB、BC、CD、DA的中点,则EG2+FH2的值为(  )
A.9B.18C.36D.48

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,AB是⊙O的直径,点P在AB上,C,D是圆上的两点,OE⊥PD,垂足为E,若∠DPA=∠CPB,AB=12,DE=4$\sqrt{2}$.
(1)求OE的长;
(2)求证:PD+PC=2DE;
(3)若PC=3$\sqrt{2}$,求DP的长和sin∠CPB的值.

查看答案和解析>>

同步练习册答案