精英家教网 > 初中数学 > 题目详情

【题目】如图,等腰Rt△ABC中,BA=BC,∠ABC=90°,点D在AC上,将△ABD绕点B沿顺时针方向旋转90°后,得到△CBE.

(1)求∠DCE的度数;

(2)若AB=4,CD=3AD,求DE的长.

【答案】(1)90°(2)2

【解析】试题分析:(1)首先由等腰直角三角形的性质求得∠BAD∠BCD的度数,然后由旋转的性质可求得∠BCE的度数,故此可求得∠DCE的度数;

2)由(1)可知△DCE是直角三角形,先由勾股定理求得AC的长,然后依据比例关系可得到CEDC的长,最后依据勾股定理求解即可.

试题解析:(1∵△ABCD为等腰直角三角形,

∴∠BAD=∠BCD=45°

由旋转的性质可知∠BAD=∠BCE=45°

∴∠DCE=∠BCE+∠BCA=45°+45°=90°

2∵BA=BC∠ABC=90°

∴AC=

∵CD=3AD

∴AD=DC=3

由旋转的性质可知:AD=EC=

∴DE=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知点(﹣2,y1),(﹣4,y,2)在函数y=x2﹣4x+7的图象上,那么y1 , y2的大小关系是(
A.y1>y2
B.y1=y2
C.y1<y2
D.不能确定

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系 中,正方形 的顶点 轴上,且 ,则正方形 的面积是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形 是正方形, 垂直平分线上的点,点 关于 的对称点是 ,直线 与直线 交于点 .

(1)若点 边的中点,连接 ,则
(2)小明从老师那里了解到,只要点 不在正方形的中心,则直线 所夹锐角不变.他尝试改变点 的位置,计算相应角度,验证老师的说法.

如图,将点 选在正方形内,且△ 为等边三角形,求出直线 所夹锐角的度数;
(3)请你继续研究这个问题,可以延续小明的想法,也可用其它方法.

我选择小明的想法;并简述求直线 所夹锐角度数的思路.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠ACB =90°,∠ABC=30°,将△ABC绕点C顺时针旋转 角(0°< <180°)至△ABC , 使得点A′恰好落在AB边上,则 等于( ).

A.150°
B.90°
C.60°
D.30°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,动点A(a,0)在x轴的正半轴上,定点B(m, n)在第一象限内(m<2≤a).在△OAB外作正方形ABCD和正方形OBEF , 连接FD , 点M为线段FD的中点.作BB1x轴于点B1 , 作FF1x轴于点F1.

(1)填空:由△≌△ , 及B(m, n)可得点F的坐标为 , 同理可得点D的坐标为;(说明:点F , 点D的坐标用含mna的式子表示)
(2)直接利用(1)的结论解决下列问题:
①当点Ax轴的正半轴上指定范围内运动时,点M总落在一个函数图象上,求该函数的解析式(不必写出自变量x的取值范围);
②当点Ax轴的正半轴上运动且满足2≤a≤8时,求点M所经过的路径的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】《九章算术》卷九“勾股”中记载:今有户不知高广,竿不知长短.横之不出四尺,纵之不出二尺,斜之适出.问户斜几何.
注释:横放,竿比门宽长出四尺;竖放,竿比门高长出二尺;斜放恰 好能出去.解决下列问题:

(1)示意图中,线段CE的长为尺,线段DF的长为尺;
(2)求户斜多长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】abc为平面上三条不同直线,

(1)abbc,则ac的位置关系是________

(2)abbc,则ac的位置关系是________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知四边形ABCD是平行四边形,下列结论中不正确的是(
A.当AB=BC时,它是菱形
B.当AC⊥BD时,它是菱形
C.当∠ABC=90°时,它是矩形
D.当AC=BD时,它是正方形

查看答案和解析>>

同步练习册答案